REPORT DOCUMENTATION PAGE AFRL-SR-BL-TR-02-

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructioi %
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect ¢ D Z 0 Z)
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reparis (0704-0188), 12 —ccoz

. . Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to con P un‘lrﬂ’d‘oééirm;play a currently
» MB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. "—
EPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

03-04-2002 Paper/PDF files 12-01-1997 - 4-30-2001
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

YF22 MODEL WITH ON-BOARD ON-LINE LEARNING MICROPORCESSORS-

BASED NEURAL ALGORITHMS FOR AUTOPILOT AND FAULT-TOLERANT 5b. GRANT NUMBER

FLIGHT CONTROL SYSTEMS F49620-98-1-0136

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Marcello R. Napolitano, PI, Professor 5e. TASK NUMBER

Mechanical and Aerospace Engineering Department — PO Box 6106

West Virginia University, Morgantown, WV 26506/6106 5f. WORK UNIT NUMBER

Tel. (304) 2934111 Ext. 2346 — E-mail: napolit@cemr.wvu.edu]

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFOEI;MING ORGANIZATION REPORT
NUMB!

West Virginia University Research Corporation
886 Chestnut Hill Road

P.O. Box 6845

Morgantown, WV 26506

Tel. (304) 2933998

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
Dr. Belinda B. King, Program Manager, Dynamics and Control AFOSR

AFOSR/NM

801 N. Randolph St., Room 732 11. SPONSOR/MONITOR’S REPORT

Arlington, VA 22203

'. (703)696-8409, Fax(703)696-8450
PE?DISTRIBUTION / AVAILABILITY STATEMENT

20020401 060

13. SUPPLEMENTARY NOTES
This document was prepared for the AFOSR, Dynamics and Control Program.

14. ABSTRACT

This project focused on investigating the potential of on-line learning "hardware-based"
neural approximators and controllers to provide fault tolerance capabilities following sensor
and actuator failures. Following a phase of simulation studies a set of selected
architectures for neural estimators and neural controllers were flown on a semi-scale YF-22
aircraft model. The YF-22 model was designed, built, and flown at research facilities at West
Virginia University. Additionally, a customized electronic payload featuring these fault
tolerant schemes was designed, built, tested and interfaced with the YF-22 flight control
system. A series of 33 flight tests were conducted with the aircraft; the flight data
confirmed the potential of neural estimators and controllers for fault tolerance purposes.
Another research objective was to start addressing system requirements leading to the problem
of software validation and verification for this new class of algorithms for fault tolerant
flight control systems.

15. SUBJECT TERMS

Fault-Tolerant Flight Control System, Neural Networks, Sensor Failure, Actuator Failure,
Flight Testing

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Marcello R. Napolitano
EPORT b. ABSTRACT ¢. THIS PAGE 154 + 19b. TELEPHONE NUMBER (include area
rUnclassified | Unclassified { Unclassified] code)
none Appendix | “3041293-4111 Ext.2346

Standard Form 298 (Rev. 8-98)
Prescribed by ANS! Std. 239.18

‘ Final Report

YF22 MODEL WITH ON-BOARD ON-LINE LEARNING
MICROPROCESSORS-BASED NEURAL ALGORITHMS FOR AUTOPILOT
AND FAULT-TOLERANT FLIGHT CONTROL SYSTEMS

GRANT F49620-98-1-0136
Total Funding: $230,000

submitted by:

Marcello R. Napolitano, P, Professor
Department of Mechanical and Aerospace Engineering
West Virginia University, Morgantown, WV 26506/6106
Tel. (304) 2934111 Ext. 2346, Fax (304) 2936689
E_mail: napolit@cemr.wvu.edu

submitted to:

Dr. Belinda B. King
Program Manager, Dynamics and Control
AFOSR/NM
801 N. Randolph St., Room 732
Arlington, VA 22203
Tel. 703-6968409, FAX 703-6968450
E-mail: belinda.king@afosr.af- mil

. March 2002

ABSTRACT

This project focused on investigating the potential of on-line learning “hardware-
based” neural approximators and controllers to provide fault tolerance capabilities following
sensor and actuator failures.

Following a phase of simulation studies a set of selected architectures for neural
estimators and neural controllers were flown on a semi-scale YF-22 aircraft model. The YF-
22 model was designed, built, and flown at research facilities at West Virginia University.
Additionally, a customized electronic payload featuring these fault tolerant schemes was
also designed, built, tested and interfaced with the YF-22 flight control system. A series of
33 flight tests were conducted with the aircraft; the flight data confirmed the potential of
neural estimators and controllers for fault tolerance purposes.

Another research objective was to start addressing system requirements leading to
the problem of software validation and verification for this new class of algorithms for fault
tolerant flight control systems.

Table of Content
Abstract

Table of Content

Introduction

Project Personnel

Section #1: Design and construction of the WVU YF-22 model
Section #2: Design and construction of the electronic payload

Section #3: Flight-testing activities.

Section #4: Development of a mathematical model for the WVU YF-22 using parameter
estimation from flight data and development of a Matlab simulation code featuring on-
line learning neural networks for fault tolerant flight control systems (sensor and actuator
failures).

Section #5: Formal specification of requirements for analytical redundancy-based fault
tolerant flight control systems

Section #6: Flight testing results of the application of the fault tolerant schemes.

Appendix A - Copies of publications from the project

A.1 - Fravolini, M.L., Campa G., Napolitano, M.R. “A Neural Network Based Tool for
Aircraft SFDIA Modeling and Simulation”, Proceedings of the 2001 IASTED
International Conference on Modeling and Simulation, Pittsburgh, May 2001.

A.2 - Napolitano, M.R., Younghwan A., Seanor, B., “A Fault Tolerant Flight Control
Systems for Sensor and Actuator Failures Using Neural Networks”, Aircraft Design
Journal, Pergamon Press, Volume 3 (2000), pp. 103-128.

A.3 - Del Gobbo, D., Napolitano, M.R., “Issues in Fault Detectability for Dynamic
Systems”, Proceedings of the 2000 American Control Conference (ACC) Conference,
Chicago, IL, June 2000

A.4 - Del Gobbo, D., Cukic, B., Easterbrook, S., Napolitano, M.R., “Fault Detectability
Analysis for Requirements Validation of Fault Tolerant Systems”, Proceedings of the 4™

IEEE High-Assurance Systems Engineering Symposium, Washington DC, November
1999 :

A.5 - Napolitano, M.R., Younghwan, A., Seanor, B., Pispistos, S., Martinelli, D.,
“Application of a Neural Sensor Validation Scheme to Actual Boeing B737 Flight

data”, Paper 99-4236, Proceedings of the ‘99 AIAA Guidance Navigation & Control
Conference, Portland, OR, August 1999

A.6 - Del Gobbo, D., Napolitano, M.R.., Callahan, J., Cukic, B. “Experience in
Developing System Requirements Specification for a Sensor Failure Detection and
Identification Scheme”, Proceedings of the 3™ IEEE High-Assurance Systems
Engineering Symposium, Washington DC, November 1998

INTRODUCTION

This document presents a summary of the results of a research effort on the
design, construction, and flight-testing of a semi-scale YF-22 flying research model. The
model is cquipped with a specific electronic payload to demonstrate the capabilities of
on-line learning neural networks for fault tolerant flight control systems. An additional
objective was to start to address software validation and verification issues for this
specific class of control systems.

The report is divided in the following sections highlighting different results and
accomplishments:

Section #1: Design and construction of the WVU YF-22 model.

Section #2: Design and construction of the electronic payload.

Section #3: Flight-testing activities.

Section #4: Results of a parameter identification study for the determination of the
mathematical model of the WVU YF-22 aircraft followed by the development of
Matlab/Simulink simulation codes featuring on-line learning neural networks for fault

tolerant flight control systems (sensor and actuator failures).

Section #5: Formal specification of requirements for analytical redundancy-based fault
tolerant flight control systems.

Section #6: Flight testing results of the application of the fault tolerant schemes.

Appendix A contains a copy of the technical publications from this effort.

Project Personnel
Several researchers were fully or partially supported throughout the duration of

the project (3 /2 years). A list of the researchers involved in the project includes:

Marcello Napolitano, Protessor, PI;

David Martinelli, Associate Professor, Co-PI;

Brad Seanor, Aerospace Engineering Graduate Research Assistant, current PhD
student;

Diego Del Gobbo, Aerospace Engineering Graduate Research Assistant,
December 2000 WVU graduate with a PhD in Aerospace Engineering (later
partially involved as Research Assistant Professor);

Gu Yu, Aerospace Engineering Graduate Research Assistant (PhD student)
Srikanth Gururajan, Aerospace Engineering Graduate Research Assistant (PhD
student);

Peter Cooke, Aerospace Engineering Undergraduate Research Assistant, Pilot;
Ben Reid, Aerospace Engineering Undergraduate Research Assistant.

A list of former WVU researchers (who graduated or leff WVU before the end of

the project) includes:

Stelios Pispistos, Aerospace Engineering Graduate Research Assistant, August
1999 WVU graduate with a MS in Aerospace Engineering;

Younghwan An, Aerospace Engineering Graduate Research Assistant, December
2000 WVU graduate with a PhD in Aerospace Engineering;

Francesco Nasuti, Research Assistant Professor.

The project also involved the collaboration of:
Giampiero Campa, Research Assistant Professor;

Mario Luca Fravolini, Visiting Research Assistant Professor.

Craig Aviation was a Sub-Contractor in this project.

Section #1

Design and construction of the WVU YF-22 model

Section #1 - Table of Contents

1.1. — Design and Construction of the WVU YF-22 Model

1.2. — Selection and Interface of the Propulsion System

1.1. — Design and construction of the WVU YF-22 Model

The design and the construction of the YF-22 model started in 1998 with the
collaboration of several graduate students and research personnel at West Virginia
University (WVU) along with Craig Aviation, an external sub-contractor.

The adopted philosophy for the design of the WVU YF-22 model was quite
simple and straightforward. Unlike equivalent recreational models, research aircraft
models cannot be exact scale models due to the need of carrying a research payload
whose weight could be a substantial ratio of the take-off weight. Thus, the WVU YF-22
aircraft was designed around its payload. Therefore, as soon as a preliminary estimate of
the size and weight of the electronic payload (described in Section #2) was available, two
critical design parameters - the “Weight/Wing Surface” ratio (also known as the wing
load W/S) and the “Thrust/Weight” ratio - were set to suitable ranges to achieve
satisfactory handling qualities and dynamic characteristics. In turn these design
parameters dictated the necessary installed thrust and the size of the wing surface, which,
in turn, allowed the sizing and the design of the entire aircraft model.

Including the construction of the plug and mold of the model, the design and the
construction of the WVU YF-22 model — excluding the electronic payload - required
approximately 1,400 working hours by WVU graduate students and Craig Aviation over
a 10-month period. The WVU YF-22 aircraft model is shown in Figures 1.1 and 1.2.

Figure 1.1 — The WVU-YF-22 Model

Figure 1.2 — The WVU-YF-22 Model

A summary of the main characteristics and geometric data of the WVU YF-22
model are shown in Table 1.1. Table 1.2 lists the raw materials used for the construction
of the model while Table 1.3 lists more detailed information.

Scale approx. /8"

Length 84 in

Wing span 67.5 in

Remote control (RC) 8 channel programmable radio

Channel at nominal conditions: L/R Horizontal Stablilator, L/R
ailerons, L/R rudders, L/R flaps, engine throttle, nose gear and retracts,
brakes)

Table 1.1 ~Geometric data and basic characteristics of the WVU YF-22 mdel

Fuselage Fiberglass, carbon fiber, plywood reinforcement
Wing Fiberglass, foam, balsa, plywood

Front access hatch RC/computer interface, front gear, probe sensors
Middle access hatch computer payload, aircraft sensors, main gear, fuel
Rear access hatch propulsion system, control surface sensors, servos
Landing gear retractable gear w/brake system

Propulsion system 28 Ibs. thrust miniature turbine (RAM 1000)

Table 1.2 — Construction details of the WVU YF-22 Model

Wing surface approx. 11.0 ft*

Chord (wing root) 38.59 in

Chord (wing tip) 11.79 in

Wing tip ratio 0.3

Aspect ratio 2.87

Wing sweep angle approx. 47°

Single stablilator surface 138.3 in’

Single aileron surface 27.6 in”

Single vertical tail surface 180.0 in”

Single rudder surface 40.8 in”

Thrust (cruise conditions) approx. 25 lbs

Weight (configuration #1) 36.8 lbs
Configuration #1: with electronic payload, without fuel

Weight (configuration #2) 43.3 Ibs. (with 104 oz. ~ 6.5 1bs. fuel)
Configuration #2; with electronic payload, with full fuel

Thrust/Weight (configuration #1) approx. 0.68

Thrust/Weight (configuration #2) approx. (.58

Wing load (W/S) approx. 3.34 Ibs/ ft*

(configuration #1)

Wing load (W/S) approx. 3.94 Ibs/ ft*

(configuration #2)

Table 1.3 — Additional characteristics of the WVU YF-22 model

1.2. — Selection and interface of the propulsion System

R.A. Microjets, Inc. produces the RAM 1000 engine installed on the WVU YF-22
model. The maximum available thrust range from this engine is 28 Ibs. The RAM 1000
is a single shaft turbojet with an annular combustor and with a fuel consumption of 12
oz./min at maximum throttle. A single axial flow turbine wheel drives a single stage
centrifugal compressor. The shaft is supported by two lubricated, pre-loaded angular
contact bearings. An electronic control unit (ECU) monitors exhaust gas temperature,
engine compressor pressure, and controls the pump drive voltage. The miniature pump in
turn controls turbine speed by varying its RPM and, conversely, the fuel supplied to the
turbine.

Throughout a typical flight in Configuration #2 the throttle setting is at
approximately “2 maximum thrust” with maximum throttle settings necessary only for
take-offs. The mounting of the jet engine on the model is shown in Figure 1.3. A metal
screen between the cargo bay and the engine bay was introduced to avoid the ingestion of
small objects and/or pebbles by the engine (with potentially catastrophic consequences).
The specifications of the RAM 1000 engine are summarized in Table 1.4.

Figure 1.3 — Installation of the RAM 1000 engine on the YF-22 model

Maximum thrust 125 Newtons (28 1bs.)

Thrust range 5N.(1.01bs.) - 125 N. (28 1bs.)
Fuel consumption 12 0z. / min. @ Max R.P.M
RPM range 36,000 @ Idle - 126,000 Max
Pressure ratio 3:1

Exhaust Gas Temperature (EGT) 650 Degree C. (Max)

Weight: 2.5 1bs

Max diameter 108 mm (4.25")

Total length 216 mm (9.5")

Table 1.4 — Specifications of the RAM 1000 turbine

Section #2

Design and construction of the electronic payload
of the WVU YF-22 model

Section #2 - Table of Contents

List of Symbols (Section #2)

2.1 — General description of the electronic payload of the WVU YF-22 Model
2.2 — Description of the remote control (RC) components.

2.3 — Description of the on-board computer (OBC).

2.4 — Description of the sensors.

2.5 — Description of the control/switch box.

2.6 — Description of the on-board power system.

2.7 — Interfacing of the components on the WVU YF-22 model.

2.8 — Description of the Data Acquisition Software

List of Symbols (Section #2)

Greek Symbols

a Longitudinal aerodynamic angle of attack (deg)

B Lateral sideslip angle (deg)

Acronyms

AFDIA Actuator Failure Detection, Identification, and Accommodation
CG Center of Gravity

DAS Data Acquisition Software

ECU Engine Control Unit

EMI Electro-Magnetic Interference

GCU Ground Control Unit

MU Inertial Measurement Unit

OBC On-Board Computer

PWM Pulse Width Modulation

RC Remote Control

SFDIA Sensor Failure Detection, Identification, and Accommodation

2.1 — Design Approach for the Electronic Payload of the WVU YF-22

Model

The electronic payload of the WVU YF-22 was designed to perform in the

following modes:

MODE #1 : manual flight with data acquisition.
The ground pilot has direct control of the aircraft. Flight data from a network of
sensors are collected and stored in the on-board computer.

MODE #2 : automatic flight with actuator/sensor failure with manual control in the

background

The design and the development of the electronic payload of the WVU YF-22
model required approximately 2,800 hours by two WVU graduate students and a research
associate over a 16-month period.

The on-board computer (OBC) drives the control surfaces and “injects”
actuator/sensor failures. The pilot can switch from manual flight to automatic flight and
vice versa anytime. At any time in Mode #2 the pilot can regain direct control of the
aircraft. The hardware/software requirements for the two modes are shown in Table 2.1.

= AFDIA hardware

Mode Hardware Software Other
Requirements Requirements Requirements
Manual flight with data [®* RC electronics s Data Acquisition | -
acquisition = Instrumentation Software
electronics
= Data recorder
Automatic flight = RC electronics » Data Acquisition | ® Design of
With sensor failure (for | * Instrumentation Software guidance/control
SFDIA) OR actuator electronics * SFDIA software law.s
failure (for AFDIA) * Data recorder OR = Switch procedure
» Control computer |® AFDIA software (manual/automatic)
= Switch module " SFDIA failure
(manual/automatic) procedure
= Servo driver OR
module AFDIA failure
v SFDIA hardware procedure
OR

Table 2.1 — Hardware/software requirements for each of the modes

The main components of the WVU YF-22 electronic payload are:

e the remote control (RC) system,
¢ the on-board computer (OBC),
¢ the network of sensors,

. ¢ the control/switch board,
e the power components.
The development was divided into the following phases.

- Phasel
Design of the overall architecture.
- Phase2
Manual RC mode.
- Phase3
Manual RC mode with data acquisition.
- Phase 4
Manual RC mode with data acquisition and “injections” of actuator and sensor
failures.

2.2 — Description of the remote control (RC) components.

The components of the RC system for the WVU YF-22 model are:
- 1 receiver,

- 11 servos,
- 1 microprocessor controlling the engine.

A brief description on each of these components is provided below. The RC
receiver has been mounted on the control/switch board (described in Section 2.5). The
receiver has 8 channels that can be driven coupled or with different mixing strategies

‘ depending on the operating modes described above. On the receiver there are 8
connectors for servos, 1 extra connector (not used), and 1 connector for power supply
(connected to a battery).

There are 11 servos and three additional servo signals for engine and computer
use, as outlined below in Table 2.2. Note that multiple servo signals can be driven with
the same channel.

Receiver Numbers of Cable Servos
channel servo signal
1 2 L+R Ailerons
2 3 L+R Elevators
Brake
3 1 R Throttle
L+R+N Rudders
Nose wheel
5 1 N Retracts
6 2 LR Flaps
7 1 Computer Computer Use
8 1 Not used

Total 13
. Table 2.2 — List of the receiver channels

Each servo connector (Z-connector), shown in Figure 2.1, has 3 pins with the following
signals:

Pin Signal
1 Command (PWM)
2 GND
3 V+

I
]

i

g
gl

BLACK
Figure 2.1 - Z-connector

Note that all the servos can share the same V+/GND signals. To minimize the
interference between receiver and servos, two separate battery packs are used for the
receiver and two battery packs are used for the servos. DB9 (serial) connectors (with 9
pins) have been used to transfer servo signals. There are two cables connected to each
side of the plane. Each main cable is connected to the control/switch board (outlined in
Section 2.5 below) with a DB9 connector and ends with 5 RC connectors connected to
the relative rudder, elevator, aileron, and flap servos and the Engine Control Unit (ECU).

2.3 — Description of the on-board computer (OBC).

The on-board computer (OBC) is based on a PC/104 format to minimize weight
and power consumption. The OBC performs the basic functions of acquiring and
recording flight data as well as hosting the software featuring the control laws. The entire
assembly is shown in Figure 2.2.

Figure 2.2 ~OBC unit (upper view)

A more detailed side-view showing all the different components is provided in Figure
2.3.

SN B WO N

Figure 2.3 — OBC unit (side view)
with:
1: connection and control panel,
2: custom adapter board,
3: data acquisition module (Diamond-MM-32),
4: video module (Minimodule /SVG-II),
5: CPU module (Coremodule /P51)
‘ 6: power supply module (Jupiter-MM).

The CPU module, which is the critical component of the OBC, is the AMPRO
Coremodule /P51 shown in Figure 2.4.

PCI04-Plux Hicr Dexsity MO Connecror:
PCI Bus BIDA, PARALLER, SERIAL, USB, UTILTY bever Pornne® Taee Canmen

TCP,
InteL TX Cripser PCI10A-Plus 1SA Bus Packace (TCP)

SourH Brince

DRAM Mapuie HicH Densiry nteL TX Chipser

KO Commecron: ConNeEcTOR Noath Brosce

Fiomev, IDE Hearsmk Locarion

{Hesrarx Not Snawn)
Front View Back View

Figure 2.4 —- AMPRO Coremodule /PSI CPU module

The specifications of the CPU card are provided in Table 2.3 below.

CPU

¢ Pentium CPU, 133 MHz VRT internal clock
rate,

CHIPSET * Intel 82439TX North Bridge/82371AB South
Bridge
MEMORY * 64 Mbytes
DMA INTERNAL * 7 DMA channels (8237 equivalent),
« 15 interrupt channels (8259 equivalent)
COUNTER TIMER * 3 programmable counter/timers (8254
equivalent)
KEYBOARD » PC/AT-compatible keyboard port
REAL TIME CLOCK * Real time clock with CMOS RAM
(MC146818 equivalent); requiring external 3.0-
3.6V battery
BIOS * Award ROM-BIOS with Ampro
enhancements
SERIAL * 2 RS232C serial ports with full handshaking,
both ports implemented using 16C550
equivalent, with 16 byte data FIFOs,
» Serial port 2 supports TTL mode
PARALLEL * IEEE-1284 compatible enhanced parallel
printer port with bi-directional data lines
FAST IDE * Supports Ultra DMA/33 mode transfers for
throughput up to 33 MB/sec
FLOPPY * Supports 1 or 2 drives
PS/2 MOUSE PORT « Usable with PS/2 mouse devices
USB » Two USB ports
IRDA * Infrared interface port
* Normal mode supports up to 115.2K Baud
« Fast IR mode supports up to 4M bits per sec
ON BOARD DISKONCHIP™ * 4 or 8 MB storage capacity
» Real-time operating system support
CONFIG EEPROM * Supports battery-free boot capability
* 512 bits available for OEM use
WATCHDOG TIMER » Utilizes real-time clock alarm function
+ Timeout triggers hardware reset or non-
maskable interrupt
SIZE *3.6x3.8x0.9in. (90 x 96 x 23mm)
BUS » Compatible with 16-bit PC/104 ISA bus
» Compatible with 32-bit PC/104-Plus PCI bus
ENVIRONMENTAL * 0 to 70 deg, C standard temperature

* Weight: 4.1 oz. (116 gm)

Table 2.3 — Specifications of the CPU card

The video card in the OBC, shown in Figure 2.5, is the AMPRO Minimodule/SVG-II.

.‘: N
SR e Tt

Figure 2.5 - AMPRO Minimodule/SVG-II video card

The DC power supply card, shown in Figure 2.6, is the Diamond Jupiter-MM card.

Figure 2.6 - Diamond Jupiter-MM power supply card.

The data acquisition card, shown in Figure 2.7, is the Diamond MM-32 card. The
performance of the data acquisition card is particularly critical. In fact this card not only

collects signals from each sensors, but also send commands to drive servos through the

digital output.

Figure 2.7 - Diamond MM-32 data acquisitiord.

Through the data acquisition card the OVB processes 22 (out of 32) analog inputs, that is:

o and B aerodynamic angles,

static and dynamic pressure,

left and right elevator deflections,

deflections of the left and right rudders,

deflections of the left and right ailerons,

linear accelerations along the X, Y, and Z body axes,
angular velocities around the X,Y, and Z body axes,
the pitch and roll Euler angles,

the control switch position (described below),

the command switch position (described below),
the battery’s voltage.

Another OCB component is the adapter board, shown in Figure 2.8.

®

-

Figure 2.8 — Cutm—built per card.

The task of the adapter card is to connect the serial port, the video port, and the
keyboard signals to the panel for input/output and communication. The board also
connects the battery and external power supply and provides different voltage levels for
the panel. Furthermore, the board connects the sensor signals between the panel and the
data acquisiton card. The adapter card was custom-designed and built at WVU; the
design of the interface with the signals from the sensors is shown in Figure 2.9.

L1532
P anti_aliasing_titer! \ anti_aliasing_firer11 anti_aliasing_tater21 anti_sfiasing_fiter3t
1
N 11 o o4 in g PPPRIRL I gy prer IR0) W] o3
2
3 anti_aliasing_fHter_s anti_afiasing_fiter_s onti_kasing_tater s antl_sliasing_titer_s
: anti_sliasing_fiter2 anti_aliasing_fiter12 anti_afiasing_fiter22 anti_aliasing {Rer32
H 12 . avomoz i m onlliz o Coplozll i 032
7
s anti_aiiesing_fiter_s anti_aliasing_{ter_s anti_skasing_fiter_s antl_sliasing_fiter_s
9 anti_afiasing_fiter3 anti_sliasing_fRert3 anti_aliosing_fiter23
3‘3 fopon el g oo i pu woon
12
3 enti_aliasing_fitter_s onti_sliasing_fiter_s anti_sliasing_fiter_s
14 anti_aliasing filters anti_sliasing_fter4 anti_aliasing_fitler24
X . 9! |
I 2 AAF) T e B e N s S YT e
J4P3
7
onti_sliasing fiter_s anti_aliasing_tiker_s anti_slinsing_fiter_s 1 2P0 17
HEADER 17 anti_aliasing_féters anti_oliasing_fier1s ant_aliesing_{Her25 3 H 15
P2 15 AR aro 054 4L15 aar T -—b' =YY 7 3 =
20
s 10
:; 1 onti_aliasing_fiter_s anti_stiasing_fites_s anti_aNasing_fiter_s o2 g—;—
o 2 anti_sliasing_{ #terd ant_atiasing_fiter16 anti_afiasing_{iter26 1314 2
3 15 16 5
2 16 o6 ||eoxs 126 o2 0 24
a 1 AAFI AAFO 1 AAF1 AAFO ———iwx AAFG 1718
21 25 Connector to
5 20 21
;g 6 anti_atiasing_fiter_s anti_aliasing fizer s anti_aliasing_fiter s 21 22 2? the DAQ board
7 anti_atiasing_fitter? anli_liasing_fter17 anti_liasing_titer27 23 2
2L 3 — LS L 25 26 24
5 17 o1 117 on 4 o2 25
s 1 AEI MFO 1 —b AAFI AAFO 27 2 on
26 30
10 3 30
g; 11 anti_sliasing_fdter_s anti_aliasing_fier_s anti_slinsing_fAter_s 3 32 31
= 12 antl_sliasing_fiterd anti_atiasing_fiter1s anti_ahasing_fHer2s 3 u <54
_-%———4 b s AAF(AFOf e YT e £ e m 028 —d3 ap—x
15 X035 40
32 16 anti_sliasing_fiter_s anti_stiasing_fiter_s anti_akasing_(iter_s N 31 42 P—X
17 anti_sfiasing_fiterd anti_aliasing_fiter19 anti_akiasing_fiter20 X—aqs3 44 p—X
L2 AAF} AAFO S | AAFL AAFO owipls AAF | AAFO o *»—q :; : p—x
HEADER 17
¥—q a9 50 X
anti_afiasing_fiter_s anti_sliasing_fier_s entl_aliasing_fiter_s TR
Connection anti_aliasing_fitter10 snti_abasing_{Xer20 anti sligsing filer30 X2
points from the | AAF) ARFQ 01044120 AAFI aro2-204 1120 AAFI anrop—0-20
connectors anti_aliasing_fiter_s anti_allasing_fiter_s \ anti_aliosing_fiter_s \
N NN N

Figure 2.9 — Interface between the signals from the sensors and the adapter board

Finally, the last OCB component is the interface panel, shown in Figure 2.10.

T N R

Figure 2.10 — Interface panel

where:
1. DB9 connector for the signals from the sensors on the aircraft nose,
2. DB9 connector for the signals from the potentioments on the control surfaces on
the left side of the aircraft,
3. DB connector for the signals from the potentioments on the control surfaces on
the right side of the aircraft,
DB9 connector for resetting the IMU,
DB9 connector for Serial port #1,
DB9 connector for Serial port #2,
2 power connectors for the external power supply (for ground operations),
power switch for the RF modem,
pwer switch between on-board battery and the external power supply (for ground
operations),
10. power switch for the OCB,
11. video connector (used for on-ground operations),
12. DB15 Connector for IMU,
13. PS2 Connector for keyboard (used for on-ground opeartions),
14. position switch between different operation modes.

Voo N L

Finally, there are two additional separate connectors:
- apower connector for connecting with the on-board battery,
- a 4-pin connector for the use of a mouse (for software developing and ground
testing purposes).
The OCB unit is placed in a carbon fiber package for protection and shielding.
The whole package is installed on two carbon fiber rails; this setup allows the OCB to
slide on the rail so the aircraft can be balanced at the desired CG position. Given the
limited space of the cargo bay of the WVU YF-22 model, special attention was given to
the electromagnetic interference (EMI) problem for the OCB unit. In fact, the EMI issue
could have been potentially critical for the accuracy of the flight data as well as the safety
of the flight-testing operations. Despite the mounting of the OCB inside a carbon fiber
package, some EMI problems became evident during an initial ground-testing phase. In
particular, it was noted that the EM field from the OCB decreased the range of the RC
system. Using a spectrum analyzer a wide range of EM was discovered from the OCB.

The peak frequency of this EM was found to be at 66MHz, which was almost coincident
with the CPU on the motherboard with additional smaller peaks around 72Mhz, which is
the frequency of the RC system. This second peak was due to the fact that several cables
were working as antenna, especially the main power cable.

To overcome these EMI issues, the following countermeasures were introduced:
1- Addition of a thin steel plate at the bottom the OCB’s box to enhance the shielding of
the OCB.
2 — Introduction of chokes on selected cables of the power line and sensors lines. The
specific cables were identified based on the EMI induced using the spectrum analyzer.
3 — Shift of the RC receiver toward the nose of the aircraft, allowing an increase of the
distance from the OCB to the receiver antenna.

The combination of these countermeasures allowed decreasing the noise level by
approximately 6 db. Furthermore, to increase the safety of the flight-testing operations, a
50 Mhz RC transmitter/receiver system was selected in lieu of a 72 Mhz system.

2.4 — Description of the sensors.

The WVU YF-22 celectronic payload features a network of sensors allowing
measuring all the most important dynamic parameters; furthermore, the angular
deflections of each of the control surfaces are recorded. The list of on-board sensors
includes:

e A nose probe with a Pitot tube and vanes with potentiometers for measuring the

aerodynamic angles (a & B),

e An Inertial Measurement Unit (IMU) measuring linear accelerations, angular
velocities, along with the pitch and roll Euler angles,

e A set of potentiometers for measuring surface deflections for left/right elevators,
left/right ailerons, and left/right rudders.

A brief description of the characteristics of these sensors system is provided below.
The nose probe was designed and custom-built at WVU. Commercially available
products with excellent performance were considered but found to be too expensive for
the given budget. The nose probe on the WVU YF-22 model is shown in Figure 2.11.

Figure 2.11 - Nose pro for the U YF-22 model

The o & P vanes were manufactured with a brass tube with the wings made of
aluminum. The vanes were connected with two customized 10k potentiometers. The
characteristics of the potentiometers were selected so that they are functional after the
airspeed reaches approximately 35 mph and works smoothly with the airspeed above 40
mph. A specific procedure was designed for ground calibration of these potentiometers
prior to the airctraft take-off. The pitot tube was manufactured with two layers of brass
tubes. The dynamic pressure is measured directly from the front of the inner tube while
the static pressure is measured through 4 small holes on the side of the outer tube. Of
particular interest is the differential pressure sensor measuring the difference between the
static pressure and the dynamic pressure. Using these pressure measurements, the
measurements of airspeed and altitude were deduced using standard atmospheric air
relationships. Two SenSym pressure sensors were used for this task; one of the sensors is
shown in Figure 2.12.

Figure 2.12 — Pressure sensor for the nose probe

A SenSym ASCX15AN sensor was used for the static pressure measurement —
allowing the altitude measurement — with a range between [0-15] psi. A SenSym
ASCXOIDN sensor was used for the differential pressure — allowing the airspeed
measurement — with a range between [0-1] psi.

The IMU, shown in Figure 2.13, is the Crossbow DMU-VGX unit.

Figure 2.13 - DMU-VGX IMU unit

1

The DMU-VGX unit is a solid-state, 6-axis inertial measurement unit measuring
linear accelerations, angular velocities, pitch and roll Euler’s angles. Although fairly
expansive this unit was preferred over other products because of its performance/price
ratio. The DMU-VGX provides stabilized roll and pitch angles through signal processing
of the rate and acceleration sensors. Conventional tilt sensors use earth gravitational field
to measure angles. These sensors only measure tilt accurately when the object whose
motion is being measured is not accelerating. In dynamic environments since gravity-
based tilt sensors cannot distinguish between tilt and acceleration. The DMU-VGX uses
a combination of angular rate and acceleration signals to solve this problem. Tilt is
calculated by integrating the angular rate sensor outputs to angle. Then the tilt response
of the accelerometers corrects for error due to angular rate sensor drift. Drift corrections
are applied continuously and the frequency of the updates can be set via the serial
command 'T" <0-255>. Roll and pitch angle, angular rate, and acceleration outputs are
available in the DMU-VGX packet. This data can be requested via a serial command or
set for continuous transfer. A list of the DMU-VGX specifications is provided in Table
2.4 below.

Performance * Roll, Pitch Angle: Dynamic Accuracy 1° RMS Application Dependent
* Resolution 0.1° Typical
* Linearity <1%of FS FS Roll 180°, FS Pitch = 90°
* Full Scale Span (analog outputs) +4.096 VDC FS Roll 90°, FS Pitch = 90°
Power « Input Supply Voltage 8-30VDC
« Input Supply Current 100 mA (max)
Environmental Operating Temperature Range -40 to 85°
« Storage Temperature Range -55t085°C
* Package Aluminum housing
* Weight 475 grams
* Mechanical Shock 1000 G (1 ms half sine wave)
* Vibration 10 GRMS
Data Output Rate * Digital Voltage Mode 166 Hz
« Digital Scaled Sensor Mode 156 Hz
« Digital Angle Mode 100 Hz
* Analog Data Update Rate 400 Hz

Table 2.4 — Specifications of the DMU-VGX IMU unit

The final components of the network of sensors are the potentiometers used for
the measurements of the deflections of the control surfaces. These potentiometers were
fairly expansive since their size had to be compatible with the small size of the metal
hinges of the different control surfaces of the WVU YF-22 model. For an acceptable
trade off between high signal/noise ratio and lower power consumption 10k
potentiometers were selected.

Following a description of the on-board sensors an overview of the sensor wiring
is provided below. There are four major cables connected between sensors and the OBC:
nose cable,
left main cable,
right main cable,

IMU cable.

The nose cable connects the nose probe to the OBC. It features 6 wires measuring:
1. Ground,
2. +5Volt,

voltage signal from the o vane,

voltage signal from the B vane,

voltage signal from the dynamic pressure sensor,
voltage signal from the static pressure sensor.

SAINAIE

The IMU Cable connects the DMU-VGX IMU unit to the OCB. It features 15 wires
measuring:

RS-232 Transmit Data

RS-232 Receive Data

Vee

Ground,

X-axis acceleration (analog voltage),
Y-axis acceleration (analog voltage),
Z-axis acceleration (analog voltage),
Roll rate (analog voltage),

Pitch rate (analog voltage),

. Yaw rate (analog voltage),

. Timing pulse,

. Roll Euler angle (analog voltage),
. Pitch Euler angle (analog voltage),
. Unused,

. Unused.

Each of the two left and right main cables connects the potentiometers from each side to
the OCB. Both cable feature 7 wires measuring:

ground,

ground,

+12 Volt,

Voltage signal from the potentiometer embedded in the elevator,

Voltage signal from the potentiometer embedded in the rudder,

Voltage signal from the potentiometer embedded in the aileron,

Voltage signal from the potentiometer embedded in the flap.

The 4 cables are shielded and have a DB9 or DB15 connector at one end. In both

Nowvkwbhe=

main cables, the wire for the +12 Volt and an extra ground wire went from the outside of
the shielded cable to minimize the interference caused by the current change.

2.5 — Description of the control/switch board.

The control/switch box, shown in Figure 2.14, is a critical component of the

WVU YF-22 payload.

Figure 2.14 — Custom-designed control/switch board

The functions of the control/switch board are:

e to receive control signals from the pilot on the ground,
to receive control signals from the OBC,
to transfer the commands from the pilot into PWM signals,
to transfer the commands from the OBC into PWM signals,
to select the current operation mode of the flight control system (manual or
automatic)

e to determine the channel/signal mapping for each flight control mode,

e to distribute control signals to each of the servos.
As discussed above, the control/switch box is designed so that the aircraft can be
controlled in manual mode and automatic mode. In manual mode the receiver receives
the control signal from the pilot on the ground and controls the aerodynamic surfaces and
thrust mechanisms on the aircraft. In automatic mode, the OBC sends the commands to
the control/switch box through the serial port. According to the specific mode (with or
without failure) the control/switch board can either control all the surfaces or a subset of
the surfaces. The pilot can use Channel 7 of the transmitter to enter the automatic mode
and can decide to reverse to manual RC mode at any time. Given the unique
characteristics of the WVU YF-22 flight control system, there were not commercially
available boards. Thus, this item had to be designed and built by WVU researchers. The
components of the control/switch board are:
the receiver,
the mother board,
the command module,
the mixer,
the PWM to TTL board,
the switch board.
The block diagram of the control/switch board is shown in Figure 2.15.

ServoVCC = 4.8-6 VDC;
ControlVCC = 4.8-6 VDC;
RuxVCC = 7-15 VDC

Power_Conn

ServoVCC

ServoGND

AuxVCC

ControlvVGCC

GND

power_conn_s

Swilch Linel0:6]

sio_conn

smtchLine[O:G].J

Command_Module

RC_Receiver

ControlVCC

Pt RXLine[0-8] X

receiver_s

S10[0:1] 2001
ServoAIQT]
sio_conn_s
command_module_s "
= = Mixer
RX Line!0:8] Mixer_In[0.8]
Msxer'Oul[OWS}. Sersol0ID
E1
NTENNA

pwm2ttl

pwm2ttl_s

slatic_mixer_s

ControlVCC

Switch

ControlvCC

Switch_Line{0'6}
Servo_Signal_A[0:15]

Servo_Signal_M{0:15]
MA
GND

switch_s

Servo_Signal_0]0 15]

Brake and Retracts

Servo Connector

I

ServovVCC

Serv o_Signal[0: 15]

ServoGND

servo_conn_s

Figure 2.15 — Block diagram of the control/switch board

2.6 — Description of the on-board power system.

Prior to the design of the electronic payload a detailed power budget was
formulated. An estimate of the power consumption of each of the components is shown
below in Tabl 2.5 while Figure 2.16 shows a simple block diagram of the power

distribution.
Components Voltage(V) | Current(A) | Imax(A) | Power(W)

CPU card 5 2.370 11.85

Video card 5 0.35 1.75

DAQ Card 5 0.35 1.75

DMU VGX 12 0.1 1.2
Potentiometers 12 0.012 0.144
Total 16.69

Table 2.5 — Estimate of the power consumption for the WVU YF-22 payload

Sensor
. Electronics Cogputer RF-Modem
Box OX
Main = 24v| pcpc
Battery
Pack converter ™ oy
Servo 6V Control
Battery Electronics
Pack Box
Egtgtienri i Engine
Pack Fuel Pumpj

Figure 2.16 — Block diagram of the power scheme

2.7 — Interfacing of the components on the WVU YF-22 model.
The interfacing of the components of the electronic payload on the WVU YF-22
was particularly challenging due to the following reasons:
- limited volume in the cargo bay;
- need to minimize EMI issues (as described above);
‘ - need to accommodate a specific range for the CG of the model for handlinq
qualities purposes.
The total weight of the components is summarized below in Table 2.6.

Item Weight(Ibs)
OBC 2 Ibs.
OBC Battery Pack 1.9 Ibs.
OBC Enclosure 0.2 1bs.
IMU Unit 1.1 Ibs.
Nose Extension 0.6 lbs.
Cabling & Wiring 0.5 Ibs.
Rail System 0.5 lbs.
Control/switch board 0.4 1bs.
Potentiometers 0.2 1bs.
Miscellanea 0.5 1bs.
Total 7.9 Ibs.

Table 2.6 — Estimate of the weight for the WVU YF-22 payload

The most appropriate configuration to guarantee desirable handling qualities (see
Section #3) was found to be a configuration with all the heaviest components (that is the
OBC + IMU) located approximately at the CG. Thus, these two items were mounted on
the sliding rail to allow flexibility in the balancing of the aircraft. These components are
shown in Figure 2.17.

g

Figure 2.17 — Top view of the main cargo bay

The control/switch board, shown in Figure 2.18, was instead installed on a small
platform under the canopy, immediately in front of the OBC box in the main cargo bay.

The potentiometers are installed at the hinge axis of each control surfaces. They
. were practically bonded to the structure during the construction of the model to avoid

slippage problems. Prior to each flight they are calibrated through a customized
calibration procedure so that accurate measurements of the angular deflections are
provided to the OBC. The remaing components of the electronic payload are installed in
the nose section of the aircraft model accessable through the removable canopy. These
components are shown in Figure 2.19.

Nose Probe

Receiver Antenna

Receiver

Receiver/servo
Batteries

Pressure sensors

Computer Battery

Figure 2.19 — View of the payload components in the nose section
Particularly, the nose section houses the following components:

- the nose probe, which is directly attached to the tip of the model;

- the RC receiver (installed on the nose to avoid/minimize EMI issues);

- the RC antenna (mounted on the top of the RC receiver);

- the RC receiver/servo batteries (four identical batteries: two for the receiver and
two for servos);

- the pressure sensors (for the measurements of static and dynamic pressure);

- the battery for the OCB (2000mAhr model);

- the pressurized air tanks for the pneumatics of the front wheel brake and
retractable landing gears.

2.8 — Description of the Data Acquisition Software

The software for the OBC of the WVU YF-22 model was written as a
SIMULINK S-function compiled to be an executable file using the Real-Time-Workshop
toolbox in Matlab. The SIMULINK environment was found to be ideal for the
development of the flight control software in separate modules. The design of the on-
board software was based on the following tasks:

Task #1 - Data acquisition at nominal flight conditions;
Task #2 - Actuator Failure Detection, Identification, and Accommodation (AFDIA);
Task #3 - Sensor Failure Detection, Identification, and Accommodation (SFDIA).

The software for the SFDIA and AFDIA schemes will be described in the Section #4
and Section #6 of this document. The main function of the Data Acquisition Software
(DAS) is to read, convert, send, and store sensor readings for the electronic payload. The
development of this software was tailored on the performance of the Diamond-MM-32
PC/104 Format 16-bit Analog I/O Module. Below the main characteristics of the DAS
are described:

Analog Input Channels
The Diamond-MM-32 has the capacity of 32 analog I/O channels. 22 analog I/O

channels ~ listed below in Table 2.7 - were actually used within this effort.

Channel Number Channel Name Notes
Alpha
Beta
Static Pressure
Dynamic Pressure
Left Elevator
Left Rudder
Left Aileron
Control Switch Manual/Automatic control
Right Elevator
Right Rudder
Right Aileron
Reserved
Acceleration -X
Acceleration -Y
Acceleration -Z
P
Q
R
Pitch angle
Roll angle
Command switch Data Acquisition/Download
22 Battery Voltage

Table 2.7 — List of the I/O analog channels on the Diamond-MM-32 card

DI] rmt | bt f ot | et |t |t | gt] o { st | et
g bt 1 Y S 2N Y N 1S) I 1) A K B Kl Rl Rl Read) e

Input Ranges and Resolution
All the sensors were powered with +12V or +5V (nose probe). Therefore, all the

analog I/O channels were configured to accept 0-10V unipolar inputs with resolution of
153 pV.

A/D Conversion Formulas

The 16-bit value returned by the A/D converter is always an integer complement
number ranging from 32768 to 32767 regardless of the original input range. The range
of the input to the A/D is fixed at £10V. Actually, the input signal from the different
components is actually magnified and shifted to match this £10V range before it reaches
the A/D. For example, for an input range of 0-10V the signal is first shifted down by
‘57’ to £5V and then amplified by ‘2’ to be in the £10V range.

A/D Conversion
There are seven steps involved in performing an A/D conversion:

Step #1 - Select the input channel or input channel range

The Diamond-MM-32 contains a channel counter circuit that controls which
channel is sampled on each A/D conversion command. The circuit uses two
channel numbers called the ‘low’ and the ‘high’ channel respectively. These are
stored in registers at Base +2 and Base +3 (that is, base address of the Diamond-
MM-32 card). The circuit starts at the ‘Jow’ channel and automatically
increments after each A/D conversion until the ‘high’ channel is reached. When
an A/D conversion is performed on the ‘high’ channel, the circuit resets to the
‘low’ channel and starts over again. To read from a series of consecutively
numbered channels, the user writes the starting channel to Base+2 and the ending
channel to Base+3. In the DAS, the ‘low’ channel is set to ‘0’ and the ‘high’
channel is set to ‘21°. The data acquisition card scans the whole range once at
each sampling time.

Step #2 - Select the analog input range (Range, Polarity, and Gain codes)

The desired input range can be selected by writing to the analog I/O control
register at Base+11. The user only needs to write to this register if he/she wishes
to select a different input range from the one used for the previous conversion. As
stated above, the analog input range is 0-10V.

Step #3 - Wait for analog input circuit to settle

After changing either the input channel or the input range, the user must allow the
circuit to settle on the new value before performing an A/D conversion. The
settling time is fairly long compared to software execution times; therefore, a
timer is provided on board to indicate when it is safe to precede with A/D
sampling. The WAIT bit at Base+11 indicates when the circuit is settling and
when it is safe to sample the input.

Step #4 - Start an A/D conversion oﬁ the current channel

To generate an A/D conversion, the software simply writes to Base+0 to start the
conversion.

Step #5 - Wait for the conversion to be concluded
The A/D converter takes about 4 microseconds to complete a conversion. If a

reading of the A/D converter data is attempted immediately after starting a
conversion, an invalid data is obtained. Thus, the A/D converter provides a status
signal to indicate whether it is busy or idle. This signal can be read back as the
STS bit in the status register at Baset+8. When the A/D converter is busy
(performing an A/D conversion), this bit is ‘1’; else, when the A/D converter is
idle (conversion is done and data is available), this bit is ‘0.

Step #6 - Read the A/D data

Once the conversion is complete, the data can be read back from the A/D
converter. The data is 16 bits wide and is read back in two 8-bit bytes at Base+0
and Base+1. The following pseudo-code illustrates how to construct the 16-bit
A/D value from these two bytes:

LSB = read (base); : ‘Get low 8 bits’
MSB = read (base+1); : “‘Get high 8 bits’
Data = MSB*256+LSB ; : ‘Combine the 2 bytes into a 16-bit value’

The final data ranges from 0 to 65535 (0 to 2'%_ 1) as an integer (without the sign).
This value must be interpreted as an integer ranging from -32768 to +32767.

- Step #7 - Convert the numerical data to a meaningful value
Once the A/D value is available, it needs to be converted to a meaningful value

using the formula shown above.

Sampling Rate

The sampling rate of the DAS has been designed to be adjustable. For nominal

flight conditions in “pure” data acquisition mode (that is, without the occurrence of a
sensor or an actuator failure and without on-line learning for the neural networks — as
described in the next sections) the sampling rate is set to 100Hz. For SFDIA and AFDIA
flight testing (that is, with on-line learning for the neural networks as described in the
next sections) the sampling rate is set to S0Hz.

The block diagram of the WVU YF-22 DAS software is shown in Figure 2.20.

[Start

v

Initialize the S-function
(S-function type, input width,
output width, parameters....)

v

Initialize the Sampling fate

v

Initialize the data-acquisition card
(Low/high channels, input range...)

v

Wait for analog circuit to settle

¢

N

Scan all channels and collect data

Initialize serial port

v

v

Transfer data to voltages

-
Send data through

serial port

\

J

Pass data to the
AFDIA/SFDIA
software

e Save data to file

v
(o)

Figure 2.20 — General Diagram of the Data Acquisition Software

‘ Section #3

Flight testing activities.

Section #3 - Table of Contents
List of Symbols (Section #3)
3.1. - WVU Flight Testing Facility
3.2. - Flight Testing Phases of the WVU YF-22 Model

3.3. — Sample of Flight Test Data

List of Symbols (Section #3)

English

a Acceleration (ft/sec’)

k Discrete time index

p Aircraft angular velocity around the x body axis (roll rate), rad/sec
q Aircraft angular velocity around the y body axis (pitch rate), rad/sec
r Aircraft angular velocity around the z body axis (yaw rate), rad/sec
t Time, sec

Greek

o Angle of attack, rad or deg

B Angle of sideslip, rad or deg

0 Pitch Euler angle, rad or deg

) Control surface deflection, rad or deg
i) Roll Euler angle, rad or deg

Y Yaw Euler angle, rad or deg
Subscripts

A Aileron

E Elevator

L Left side

R Right side

R Rudder

Acronyms

BLS Batch Least Square

CG Center of Gravity

FTR Fourier Transform Regression
GCU Ground Control Unit

LS Least Square

LWR Locally Weighted Regression
MLP Multi-Layer Perceptron

NN Neural Networks

OBC On-Board Computer

PID Parameter Identification

RC Remote Control

RLS Recursive Least Square

3.1. - WVU Flight Testing Facility

The research team at WVU has access to a dedicated facility for the flight-testing
activities. The facility is located approx. 70 miles south with respect to the WVU main
campus in Morgantown, WV, and it is part of the WVU campus at Jackson Mill, WV.
The facility is named “Louis Bennett Field” and it features a semi-paved 3,400 ft, approx.
50 ft wide runway.

Given the experimental nature of the research the remoteness of the facility is
ideal for the purpose. The only drawbacks are related to the general weather conditions
in West Virginia; on average there are only 80-90 days/year with atmospheric conditions
ideal for flying research aircraft models. For our purposes we define as ideal the
following atmospheric conditions:

- absence of precipitation;

- temperatures between 45°F and 80°F;
- humidity ratio < 65%,

- wind < 12 mph.

A customized wood platform was designed and built for the transportation of the
model to the flight testing facilities on a WVU vehicle, as shown in Figures 3.1 and 3.2.
A second vehicle with all the ground equipment and the flight testing personnel was also
used. Details of the runway at the WVU Jackson Mill facilities are shown in Figure 3.3
and 3.4.

Figure 3.1 — Details of the transportation set up of the WVU YF-22 model

Figure 3.3 —- WVU YF-22 model at the Jackson Mill facility

Figure3. - WV YF-22 model at the Jackson Mill facility

3.2. — Flight Testing of the WVU YF-22 Model
A total of 37 flights have been conducted within the activities of the project from
Summer 1999 until late Fall 2001.

The flight activities have been divided in the following phases:

PHASE #1: Ground/taxi tests of the WVU YF-22 aircraft model.

These tests were conducted for the following purposes:

- assessment of the aircraft handling qualities on the runway;

- system check of the RC radio system;

- assessment of the fuel consumption.

No particular problems were detected in this phase. Minor adjustments and/or
refinements were introduced on the model and the RC system throughout this phase.

PHASE #2 (9 flights) : Flight testing of the WVU YF-22 model in RC mode only.

These tests were conducted for the following purposes:

- assessment of the propulsion performance;

- assessment of the longitudinal and lateral directional handling qualities;

These flights allowed the pilot and the flight crew to perform:

- accurate balancing and selection of an optimal range for the aircraft CG (without
electronic payload);

- evaluation of the trimming characteristics and selection of the actuator gains for the
RC system.

PHASE #3 (6 flights): Introduction of “dummy” weight (to simulate the electronic
payload).

These tests were conducted for the purpose of evaluating the modifications in handling
qualities and propulsion performance for the model following the installation of the
payload (without the risks of loosing the payload in the event of an accident). Dummy
weights were progressively introduced with 1% lbs increment until the weight with the
electronic payload was reached. Emphasis was placed in ensuring that the addition of the
dummy weight did not imply a shift from the desirable range for the aircraft CG. No
substantial deteriorations of the handling qualities were observed for altitude flight in
addition to the expected deterioration of the propulsion performance during the climb
phase. However, a substantial increase of the pilot workload was observed during the
landing and approach phases. A partial use of the flaps was found to be necessary to
avoid high values for the longitudinal angle of attack during the final approach. Overall,
with minor adjustments to the trim configurations, the aircraft was found to be an ideal
platform for the following flight tests.

PHASE #4 (9 flights) : Installation and performance assessment of the OBC (with data
acquisition software) and the electronic payload

These tests were conducted for the purpose of evaluating the overall performance of the
electronic payload. The OBC was designed to collect data from all sensors and stores
them in the 16 MB flash card for post flight downloading. In particular the purpose of
this phase was for testing the following subsystems:

- the network of sensors;

- the OBC;

- the data acquisition system;

- the power system.

A few problems — ranging from minor to substantial - were experienced throughout this
phase leading to modifications and/or improvements in the electronic payload.
Particularly, the occurrence of significant electronic/magnetic interference (EMI)
problems was noticed; these problems were accurately analyzed with a spectrum analyzer
and solved with the modifications described in Section#2. Another modification was the
replacement of the potentiometers for the o and vanes on the nose of the YF-22 model
with more sensitive types since the original potentiometers were found to be not accurate
in the low speed range. Overall, except for the EMI issues, this flight testing phase was
fairly smooth and confirmed the reliability of the electronic payload.

PHASE #5 (7 flights): Acquisition of flight data for a parameter identification (PID)

study (for the determination of a mathematical model of the YF-22 model) and off-line
training for the neural networks of the SFDIA and AFDIA schemes

The objective of this phase was to collect a large set of flight data containing data from
typical PID (Parameter Identification) maneuvers, that is longitudinal and lateral-
directional doublets. An average of approximately 11 maneuvers were performed in each
flight with a total of 76 doublets, that is 27 elevator doublets, 23 aileron doublets, and 26
rudder doublets. These PID maneuvers, spanning over a total of approximately 52
minutes of flight time (excluding take off and landing phases) were also ideal for the
purpose of performing an initial off-line training for the different Multi Layer Perceptron

(MLP)-type neural networks (NNs) of the SFDIA and AFDIA schemes. The results of
this study are outlined in the next sections of this document.

PHASE #6 (3 flights): Flight testing of the SFDIA scheme
The objective of this phase was to collect flight data showing the performance of the

SFDIA scheme. A total of 6 sensor failures were artificially “injected” on the pitch, roll,
and yaw rate sensors in the flight control system by the pilot through the GCU. The
numerical results relative to the performance of the SFDIA scheme are reported in
Section #6.

PHASE #7 (3 flights): Flight testing of the AFDIA scheme

The objective of this phase was to collect flight data showing the performance of the
AFDIA scheme. Special modifications — described in Section #6 - were introduced on
the electronic payload to install the failure trigger hardware/software and doing flight
tests with aileron failure. The failure trigger scheme proved to be quite efficient and
reliable. A total of 4 actuator failures were triggered by the pilot during the flight with
the GCU with the pilot able to “remove” the failure at any moment during the flight. The
numerical results relative to the performance of the AFDIA scheme are reported in
Section #6.

3.3. - Sample of Flight Testing Data

Samples of flight test data are enclosed below. The flight data are relative to Flight #3 of
Phase #5. The OBC recorded 600 seconds of data including 310 seconds of flight time
excluding take off, climbing, approach, and landing. Four of each of three types of
maneuvers (elevator, lateral, and directional doublets) were performed throughout this

flight.

. Longitudinal PID - Elevator Doublet #1
20 T 1 T T L] 1

*_/J,/‘\ i

H 1) 1 i 1
285 2855 286 286.5 287 2875 268 2885

1 (] 1 [l 1 1
285 2855 286 286.5 287 2875 288 288.5
5 L Ll T ¥ T T T i

Elevator {(deg)
o

[N
[

Alpha (deg)
=

—_
o

B - e
R I) o

Az (g)
o
"
¢
p
3
P

ey

v
o
T
1

285 2855 286 286.5 287 2875 288 288.5
5D n T T T T T T

Q (deg/s)
o

A0t 1 1 L 1 1 ! -
285 2855 286 286.5 287 287.5 288 288.5
Time (sec)

Figure 3.5 — Flight data of the 1* longitudinal maneuver (Flight #1-Phase #5)

Longitudinal PID - Elevator Doublet #2
2D Ll T T ¥ T 1 T i

e “

1 1 1 1 1 1 1
33 332 333 334 335 336 337 33/ 338 340

Elevator (deg)
o

)
(o

—_
o

33 332 333 334 335 33 337 338 339 340
5 L T 1] T T Ll L T T A
PEOAN

- Ty -
'-—--—-—.p'“""w‘»w""w»‘-"‘-'»«,-»-qw—a\\ .}‘f‘ T e T L P O

o

-5 C 1 i 1 ' 1 1 | 1 1]
331 332 333 334 33 338 337 338 339 340

5[] 1y T T T T T T T T]

Alpha (deg)
o

Az (9)

Q (deg/s)
o
!

n
o

1

1 1 1 1 1 H 1
331 332 333 334 3% 33 337 33/ 339 340
Time (sec)

. Figure 3.6 — Flight data of the 2" longitudinal maneuver (Flight #1-Phase #5)

. Longitudinal PID - Elevator Doublet #3
2D ¥ T L4 T T

el '

Elevator {deg)
o

20 ' ' -
382 383 384 385 386 387 388
@ 10 | T T T ¥ L i
=
= 4 WWM
s
= -10F 1 1 1 1 1]
382 383 384 385 386 387 388
5 3]] 1 T T A
= e
g 0 :”Mﬂ*‘"‘"'\'49-&*\“;-'-’“‘*1‘,#“’"“‘\UM'-V-Jﬁ“w‘fc-ﬂ“\‘)f.'y‘\" o]w.w--*"' "‘“"""UW%\'-'WM\AW,#.-"';
St I I T‘HM 1 1 T
382 383 384 385 386 387 388
—_ 50 - T T T T T p-
@
& 0
C 'SD . 1 1 1 1 -
362 383 384 385 386 387 388
Time (sec)

Figure 3.7 — Flight data of the 3" longitudinal maneuver (Flight #1-Phase #5)

Longitudinal PID - Elevator Doublet #4
20] T L T) ¥ T

°F U_/\]
| 1 1) 1 1 |

430 4305 431 4315 432 4325 433 4335 434
10 |) T T T)) ¥ i

0 W/_,\\\/VMW
0 -

430 4305 431 4315 432 4325 433 4335 434

Elevator (deg)

)
S

’
-

Alpha (deg)

5r]

E D }‘._,a T -(_"J"‘""““'"*"‘""'».,'\"}Mﬂ J““‘J"H‘_‘,_.—‘"’“m. "-‘.,.,“ﬁ"‘q,".,a‘_a‘g»,._,.‘.\L_.-.v,..v.v-u,_,..—,\-_.;:
St) 1 L]] 1]]
430 4305 431 4315 432 4325 433 4335 434

—_ 50 -y T T T T T T T

w

k=)

g

C 5ot i

430 4305 431 4315 432 4325 433 4335 434
Time (sec)

. Figure 3.8 — Flight data of the 4™ longitudinal maneuver (Flight #1-Phase #5)

' Directional PID - Rudder Doublet #1

1 L 1 ¥ T 1 Lf] 1

0 _/,f\
-0t]]] 1] L]]] 7]
18 318 5 319 319 5 320 32E| 5 321 321 5 322 322 5 323

0F
|
318 3185 319 3195 320 3205 321 3215 322 3225 3”3
2F
0

—
[}
T

i

Beta (deg) Rudder {(deg)
&

@ PNy,
B L R A LT TME ¥ [R i
<2t i ;] i] 1 1 1]
318 318.5 319 3195 320 3205 321 3215 322 3225 323
E 1 DD B Ll] T ¥)]_.__' I |) T i
g 1] N .~ . T e
o -100 . '_' -

1 1 1] 1 1 1 1
818 3185 319 3195 320 3205 321 3215 322 3225 323

7 50f
x 50] 1 1 1 1 1 -]

318 3185 319 3195 320 3205 321 3215 322 3225 323

Time (sec)
‘ Figure 3.9 — Flight data of the 1* directional maneuver (Flight #1-Phase #5)
Directional PID - Rudder Doublet #2
a T T T ¥ T
2 1of]
5 O _//‘\
§ -10 1 i 1] L "
E 2§5Ei 367 368 369 370 371 372
g T T T T T
o
m .20 1 1 1 1 L
366 367 368 369 370 371 372
— 2 L T T T L) 13
:: D burctesaddmsrsetisimntinnpinsg "#’\AH\"'”"‘M""-J-,\.,'q""M_,\.;-v*"*-%‘H,w,,.i‘.IU.JfMW'O-v,l-r—".,(e
-2] ! 1] 1]
366 367 368 369 370 371 372
E 100 L L T _ T 1 T -
g 0 Foron e T T]
o -100¢ 1 1 1)] 1]
8 6 367 368 369 370 371 372
@ 5 - T T T T T =
@ -50]] 1 L L -
366 367 368 369 370 371 372

Time (sec)
. Figure 3.10 — Flight data of the 2" directional maneuver (Flight #1-Phase #5)

. Directional PID - Rudder Doublet #3

0 v,/_—\
-10¢ 1 I]) 1]]] 1]
5 415.5 4'!5 41&35 41'7 41?.5 4118 41|8'5 41'9 41?.5 420
WW

1]

U 1 1

415 4155 416 4165 417 4175 418 4185 419 4195 420
2- 1 T 1) Ll Ll T T T] i
0

2

-
o
T
L

Beta (deg) Rudder (deg)
[L\S]
(=

K= .
e}(ﬂ - v:*"“‘4'-»""‘;JN““"““““"'f‘-..‘MM‘J"w-\H"H#ﬁ'""MVJ‘N'“'_M‘Q"*‘A'~\'* J'_.,h“" -"_ﬂ—"-‘s‘q“h‘.f i “,_A,m,-.-_»,-—A‘-\-W.v.fg,‘,'.‘, _,‘;:
415 41@.5 416 165 417 4175 418 4185 419 41?.5 420
@ 100 ' . N 7
g o e
o -100F 1 L 1 N

] 1 1 1 1
(A5 4155 416 4165 417 4175 418 4185 419 4195 420

R (degfs)

-50 I L
415 M55 M6 4165 M7 4175 418 4185 419 4195 420

Time (sec)

Figure 3.11 — Flight data of the 3™ directional maneuver (Flight #1-Phase #5)

. Directional PID - Rudder Doublet #4
g 1D | L] T T T L] ¥ T A
e //——\
E -10 i L 1 1 L 1 L N
E 2&63 463 5 464 464 5 465 465.5 466 466.5 467
g T T T | 1 L] 1
=]
1]
m .20 I I 1 I 1 1 !
463 46?.5 4@4 4811.5 4@5 46’9‘.5 45|E 4BEIi.5 467
ff -g j...-N-ﬂw”w'iw‘—--_*'I“‘""w"H‘W"w"'3"\"#4--,,.._,ﬂ_,.-..\--A.*'-*‘““M '"'“-‘ra.“_f«.w.u,':*‘-"“'"""‘\"‘”"‘"""*'”‘v-wﬂi

1 i 1 1 1 i 1
463 4635 464 4645 465 465.5 466 466.5 467

@ 100} o - .

g of— e e]

o -100¢] 1]] it 1 1]

_ i3 4635 Mgt A5 M5 4GEE 4GR 4GS A7

0

g0

x -50] 1 1]) ! -
463 463.5 464 464.5 465 465.5 466 466.5 467

Time (sec)

Figure 3.12 — Flight data of the 4™ directional maneuver (Flight #1-Phase #5)

Lateral PID - Aileran Doublet #1

S L) T L] T T
£ 1of]
=) W/A\f i
E -0t]]] 1 i]
'{ﬁ 3.5 304 304.5 305 3055 306 306.5
g T 1 1 L) i
o
@ 5]) 1 ! 1
3P?.5 3@4 304.5 3[.]5 305.5 3@5 306.5
=)
3(-' 0 W‘!I"v“fh r'r‘-"-‘fl\n."""l\"“'\""’f"?""i‘"Jm’m"ﬁ” L‘h‘di"‘-"!""&""l""‘d""" Y M&n”;’""‘M‘}Wﬁu"ﬁy:"‘q‘,"‘a«."','.é‘*.‘!’y-\l""k"n\f"\‘"h"\‘“'L'li““l“lhi‘:ili"‘r{\"w"I’""\’
-1 I I]] 1
o35 304 3045 305 3055 306 306.5
0 —
g o —
o 200 1 ! !] 1
. 2"@3.5 304 304.5 305 305.5 3L'||B 306.5
R
12 -20 1 1 1 1 1
303.5 304 304.5 305 3055 306 306.5
Time (sec)

Figure 3.13 — Flight data of the 1* lateral maneuver (Flight #1-Phase #5)

Lateral PID - Aileron Doublet #1

a T T T T 1] T
< 10f]
= JJ__/ 7
o
E 10 1 1 i 1 1 L 1
'{ﬁ 3@3.5 354 3545 355 3555 356 366.5 357
g H S SO
%) :,/\f‘«.l*\ % Mm |
@
m .5 1 1 L 1 L
P35 w4 w5 w5 W5 m FeE 37
=
; 0 aﬂ ‘f"\" o .‘)1”‘ 2 ﬂ"i’ﬁ‘; II‘L“Niﬁhx1ﬂN‘ gt “‘\\l Moo g g \f\\fr\" ,‘] s p e _.fnﬁ'ﬁlg' *nrﬁll'fﬂ 1% ‘]‘f‘lp MY \’;V(HHL.—? " ""é’f‘—
-1
Y T T
) .
N —
o oo 1 ! 1 | I]
3535 k4 45 35 3ees 3B 3665 37
w
g 0 W
@ 1]] 1 1 !

-20
3535 354 354.5 355 355.5 356 356.5 357
Time (sec)

Figure 3.14 — Flight data of the 2" lateral maneuver (Flight #1-Phase #5)

Lateral PID - Aileron Doublet #3

1 1 1 [1 1
400 400.5 401 4015 402 4025 403

Ww

Beta (deg) Ailtlaron (deg)
o
0
(h

0
5 1 i 1 1 1 1
395 400 4005 401 4015 402 4026 403
=]
3(- L F:‘-.ﬁk"’q%}f\’[""‘"’\‘r‘“‘»"‘~"‘y"'k"’1“"lr"r"'""'"'4#'\M}[‘}b1‘nl‘fs"‘\’l’m'f‘h‘r’15,1'&1&‘&.-4\»-uﬂ‘q"‘"‘JM‘\'“"'"""""f‘t"*"i"‘.fhﬂﬁl“f‘"’--"\""-J;"‘l1‘-.,r‘ﬁ ,J"’\"ﬁt*w!“[
_ 1 1 1 | i I
3§95 400 4005 401 4016 402 4025 403
) —
o
a 2200 L I L I 1 1
H92.5 400 400.5 401 401.5 402 402.5 403
)
o 20 1 1 1] 1 1
399.5 400 400.5 40 401.5 402 402.5 403

Time (sec)

Figure 3.15 — Flight data of the 3" lateral maneuver (Flight #1-Phase #5)

Lateral PID - Aileron Doublet #4

'a T T T T T
& 10f]
= 0 ————/X“/ !
S
,_;I‘__) -0t ! 1 1 1 1]
'{ﬁ 449 4495 450 450.5 451 4515 452
g /\/\W W
I
< 0f i
= .
m 5 1 1 1 !]
749 4495 460 4605 451 4515 152
@ U . ﬂ‘f"l TR S f W “ \S,q(ljh,{|,ﬂ’.hh¢ 1 i A ”Il h Fl I’ . kir.l_f. P) Wh
:E A P "—""’f“"tf’vhllr““ AR # (" R '?' *{\ l“"""" "“'Iﬁfilif 'M“"J"«“a!ny".‘l" bihr,l*\“"r""‘ R T "f"'-li‘W
R I 1 1 I]
g4 4495 450 450.5 4'.51 45] 5 452
%) —
ot e
o 2200 1 I 1 - 1)
o4 4495 450 450.5 451 4515 452
v
o 20 1 ! 1 I 1
449 4495 450 4505 451 451.5 452

Time (sec)

Figure 3.16 — Flight data of the 4" lateral maneuver (Flight #1-Phase #5)

Section #4 - Table of Contents
List of Symbols (Section #4)

4.1 - The Parameter Identification (PID) Problem
4.1.1 — Introduction to the PID Problem
4.1.2 — The Batch Least Squares (BLS) PID Method
4.1.3 - The Locally Weighted Regression (LWR) PID Method
4.1.4 - The Fourier Transform Regression (FTR) PID Method
4.1.5 — PID Results

4.2. — Description of the Fault Tolerant Schemes
4.2.1- Neural networks-based SFDIA
4.2.2- Neural networks and cross/auto correlation-based AFDIA
4.2.3- Mathematical modeling of the SFDIA and AFDIA conditions

4.3. - The SFDIA/AFDIA Matlab code

4.3.1 - Task #1 — Dynamic simulation (at nominal and actuator failure
conditions).

4.3.2 - Task #2 — Dynamic simulation — Simulated on-line learning for the SFDIA
and AFDIA neural networks

4.3.3 - Task #3 — SFDIA simulation

4.3.4 - Task #4 — AFDIA simulation

4.3.5 - Task #5 — SFDIA/AFDIA simulation.

References (Section #4)

List of Symbols (Section #4)
English
Acceleration (ft/sec?)
Discrete time index
Cost function
Pattern for the neural network input data
Aircraft angular velocity around the x body axis (roll rate), rad/sec
Aircraft angular velocity around the y body axis (pitch rate), rad/sec
Aircraft angular velocity around the z body axis (yaw rate), rad/sec
Time, sec

“momT g R

Q
~
@
]
~

Angle of attack, rad or deg

Angle of sideslip, rad or deg
Unknown coefficients (for PID)
Random variables (for PID)

Pitch Euler angle, rad or deg

Control surface deflection, rad or deg
Roll Euler angle, rad or deg

Yaw Euler angle, rad or deg

€ 0D D™

Subscripts
Aileron
Elevator
Left side
Right side
Rudder

< RACT>

ectors & Matrices

System state matrix (for PID)
Input system matrix (for PID)
Output system matrix (for PID)
Input/Output system matrix (for PID)
Error (for PID)

Neural network output

Auto or cross correlation function
Weight matrix (for PID)

Known system inputs (for PID)
Parameters to be estimated
Known system outputs (for PID)

X ERWOO TOW >

Acronyms

AFA Actuator Failure Accommodation

AFDI Actuator Failure Detection and Identification

AFDIA Actuator Failure Detection, Identification, and Accommodation
BLS Batch Least Square

BPA Back Propagation Algorithm

DTFT Discrete Time Fourier Transform

DNN Decentralized Neural Network

DQEE Decentralized Quadratic Estimation Error
EBPA Extended Back Propagation Algorithm
FDI Failure Detection and Identification

FTR Fourier Transform Regression

LS Least Square

LWR Locally Weighted Regression

ML Maximum Likelihood

MNN Main Neural Network

MQEE Main Quadratic Estimation Error

NNC Neural Network Controller

OBC On-Board Computer

OQEE Output (of NN) Quadratic Estimation Error
PID Parameter Identification

PTBU (Neural) Parameters To Be Updated (at each computational step)
RLS Recursive Least Squares

RMS Root Mean Square

SFA Sensor Failure Accommodation

SFDI Sensor Failure Detection and Identification

SFDIA Sensor Failure Detection, Identification, and Accommodation

4.1 - The Parameter Identification (PID) Problem

4.1.1 — Introduction to the PID Problem

While one of the advantages of neural estimators and neural controllers within a
fault tolerant flight control system is the on-line learning capability, for a safer approach
the on-line neural learning could start in flight from previously off-line trained neural
architectures within the fault tolerant schemes. Thus, there was a need to determine an
approximate mathematical model of the WVU YF-22 aircraft in terms of the
conventional state matrices (A,B,C,D) so that a simulation code could be developed for
implementing the off-line training. In this section this study will be referred to as a
parameter identification (PID) study although technically it is a model identification
study. However, in the technical literature the acronym ‘PID’ is often used for both
“parameter identification” and “model identification” with the rational that “model
identification” implies the determination of the coefficients (parameters) of the matrices
of the state variable model.

The research group coordinated by the Principal Investigator has had experience
with off-line batch PID, mainly using the well-known Maximum Likelihood (ML)
method ([11iff1972], [11iff1976], and [Maine1986]). In addition, recently a research effort
was conducted at WVU toward the selection of an on-line real-time PID scheme to be
used within the NASA Intelligent Flight Control System (IFCS) F-15 program. Thus, the
codes for several algorithms suitable for on-line PID applications were developed for the
IFCS project and already available to the research team for the purpose of this project.

The “deliverable” of this PID study was an estimated mathematical model of the
WVU YF-22 aircraft — in terms of the matrices of the state variable model - on which the
off-line training for the NNs of the fault tolerant schemes was based.

The next paragraphs of this section will review 3 methods used for this PID study.
The first method is the well-known Batch Least Square (BLS), which is the most
common PID technique for batch off-line applications. For on-line real time applications
typically there are two main categories of PID methods, that is on-line PID methods in
the time domain and in the frequency domain. Thus, the other two PID methods used in
this study (the Locally Weighted Regression (LWR) method and the Fourier Transform
Regression (FTR) method) are techniques from these two different categories. Several
additional PID methods have been described in the technical literature; however, an even
more extensive PID analysis using additional PID methods was deemed to be outside the
scope of this research effort whose emphasis is on NN-based fault tolerant schemes.
Another paragraph will provide a review and a comparison of the PID results using the
WVU F-22 flight data acquired in Phase 5 (as described in Section 3). Although 2 of the
3 PID algorithms outlined below are suitable for on-line applications, the PID analysis for
the WVU YF-22 aircraft was intended to be off-line and the implementation of the PID
software on the on-board computer (OBC) was of no interest.

4.1.2 — The Batch Least Squares (BLS) PID Method

The Batch Least Squares (BLS) technique consists essentially in solving an over-
determined linear system in the least squares sense ([Mendel1973], [Ljung1987], and
[Neter1996)). It is one of the most widely used approaches for the estimation of a vector

of parameters from a collection of “almost-linearly” related input-output data. Being
based on linear algebra, this approach leads to an elegant formulation and a
straightforward analysis, allowing the use well known algorithms. In essence, the
reliability of this method comes from the propriety that a pseudo-inverse solution for a
linear system with more equations than unknowns is optimal in the least squares sense.
The general linear regression model is given by:

Y=XB+¢ 4.1)

where Y is a (nx1) vector of known responses of the system, X is a (nxp) matrix of known
inputs to the system (note that the last column of this matrix is usually a column of ones
allowing for a “bias” - namely a constant input to the system — to be introduced), £ in the
(px1) vector of parameters to be estimated, and ¢is a (nx1) vector of independent normal
random variables, with zero mean (E{g} = 0) and unknown diagonal variance-
covariance matrix. This matrix is generally assumed to be a multiple of the (nxn) identity
matrix: (o2{&} = o’I). Therefore we have that E{Y} = Xf and o’{Y} = o’l. The
problem is to find the vector £ such that X3 (which is the expected value of Y') is as close
as possible (in the least squares sense) to Y, so that o ’is minimized. Particularly, the
objective is to find the value of f that minimizes the following quadratic index:

Q=¢e"e=-XB)" (Y - XPB) (4.2)

The solution to this problem is given by:

b=X"Y=(X"X)'XTY (4.3)

It can be shown - using the Gauss-Markov theorem - that this solution is such that the
error vector:

e=Y-Xb (4.4)

has zero mean — meaning unbiased estimation - and minimum variance among all the
possible linear unbiased solutions; thus, the relative estimation is known as BLUE (Best
Linear Unbiased Estimation). Furthermore, it can be shown that the resulting estimation
for o is the MSE value (Mean Square Error):

T

MSE =25 (4.5)
n-p
The covariance of the solution is:
o’ {b} = E{(b-Ep}HB-E®}) } = (X" X)X o {1} X (X" X)™ 4.6)

= 0_2 (XTX)—I

Substituting the MSE in lieu of o in equation (7.6) we obtain:

eTe

x"x)™ 4.7)
p

o’ {b} =

n_

Since the problem of interest consists in the identification of a linear system of the form:
(¢ A B t
#07_ x(t) @8
¥() C D|lu@®)

by transposing (4.7) the PID problem can be set up as in the following:

Y=[£() y'®]
X=[x"@) «©®] (4.9)

A BT
e)

The BLS PID method is not suitable for on-line real time applications within
flight control system due to the complexity of the calculations associated with the
relationships described by Eqgs. (4.3), (4.8), and (4.9).

4.1.3 - The Locally Weighted Regression (LWR) PID Method

The Locally Weighted Regression (LWR) is a particular time domain PID method
([Atkeson1997a), [Atkeson1997b]). The LWR PID algorithm is characterized by
featuring both a weighting of the associated linear system by a diagonal matrix and a
retention and deletion algorithm. The weighting allows selecting the “most important”
data while, at the same time, avoiding to completely forgetting the (past) information
enclosed in the rest of the available data. This particular feature could be precious for on-
line estimation problems where the system to be estimated might be time varying.

In the LWR method the equation (4.1) is weighted with a diagonal matrix W to
express the major/minor importance of a particular row of data. Therefore:

WY =WXB +We (4.10)

The goal is to find the value of £ that minimizes the following quadratic index:

0=¢e"We=WY -WXB) (WY - WXP) (4.11)

The solution is provided by:

b=WX)'WY=X"W*X)"X"W?Y 4.12)
where W=WW. This solution is such that the weighted error vector:
We=WY - WXb (4.13)

has zero mean - unbiased estimation - and minimum variance among all the possible
linear unbiased solutions. The covariance matrix of the solution is given by:

o’ {b} = E{(b-E{B)B-EB) } =(X"WX)' X" W e W X(X'W*X)™

(4.14)
=o’(X"W*X)' XWX XTwWrx)™"
Substituting the MSE in lieu of ¢ in equation we obtain:
T
o {by =8 (XWX XTWAX(XTW X)) (4.15)

If W ~1, we can also consider X’ W*X(X'W?X)" ~1I.

For on-line estimation problems, the size of D=WX needs to be constrained
(depending on the available computational power). Therefore, once the number of rows
in D reaches its maximum user-selected predefined value, the problem of which rows in
D should be replaced by the new data needs to be faced. A simple strategy would be to
delete the oldest rows, or the ones that are in the least squares sense “most different” from
the current one. However, this strategy could cause the deletion of rows that bring
precious information to the estimation, causing, therefore, ill conditioning and increases
in the estimation variances for the relative parameters. A better strategy (the one used in
the implemented algorithm) would be to delete the rows of D that “bring less
information” for the estimation process. Thus, when those rows will be replaced, is it
likely that the new rows will bring more information than the ones just deleted. This
would decrease the estimation variances for the parameters. This strategy is
accomplished by replacing the rows of D whose deletion cause the trace of (D'D)! to
increase the least, since the lower is this trace, the most well-conditioned is (DTD)'1 and
the lower is the variance of the estimated parameters.

4.1.4 - The Fourier Transform Regression (FTR) PID Method

The Fourier Transform Regression (FTR) is a particular frequency domain
method suitable for on-line PID ([Morelli1997], [Morelli1998], and [Morelli1999]).
Consider a linear system of conventional continuous-time aircraft model given by:

() = Ax(t) + Bu(t)

(4.16)
y(t) = Cx(¢) + Du(t)

For a generic signal x(2), the Discrete Time Fourier Transform (DTFT) of a finite number
of samples x(iA#) is given by ([Klein1978]):

(o) = Atg x(iA)e ™ = X (w)At (4.17)

Applying the DTFT to the samples of the previous linear model will provide:

jax (@)= AX(w) + Bu ()

~ ~ (4.18)
Y(@) = Ci() + D (@)

As for the LS and BLS regression methods, the measurements of the vector x, #, and y
can be used to set up a cost function having the coefficients of 4, B, as argument. In
particular, consider the generic k-th state equation over a set of frequency points
[wlsa)z""’wm]:

_ja),fk(a),)] fT(C‘)l),ﬁT(a)l)
J0, % (@,) X7 (w,),0" (@,) i
= k 4.19
) P
jo, % (@,)] |3 (@,).7" (@,)

where 4; and B, are the k-th row of the state and control matrices A and B, respectively;
%, (@,),u(w,)are the DTFT of the k-th state and control variable relative to the

frequency w,. If we denote the above equation as ¥ = X® + & with complex equation

error, &, and obvious definitions for Y, X, and ©, the problem can be formulated as a
standard LS regression problem with complex data. Thus with the following cost function

2

ISy, ~ ~ ~
Jk =Eztlwnxk(a)n)—Akx(wn)_Bku(a)n)
n=1

(4.20)
= %(Y - XO)*(Y - XO)
the parameter vector minimizing the above function is immediately given by:
A * 1 *
& =[Re(x " X)|" Re(X"Y) 4.21)

*
where indicates a complex conjugate transpose. It should be emphasized that the cost
function is made of a summation over m frequencies in a range of frequencies of interest.

In addition, the covariance matrix of the estimates of ® is computed as:
~ A A . 2 « ~H
cov(®) = E{® - 0)(6-0)" |= 0 [Re(x")] 4.22)

where o is the equation error variance and can be estimated on-line using

62 =1 [(Y — XO)* (Y - XO)] (4.23)
(m - p)

Furthermore, the standard deviation of the estimation error for the /-th unknown of the p
parameters in ® can be evaluated as the square root of the //-th coefficient (main-
diagonal coefficient) of the covariance matrix. This standard deviation allows for an on-
line assessment of the accuracy of the estimates of the parameter. The type of required
on-line calculations should also be described for an assessment of the computational
effort. For a given frequency, @, , the DTFT at the i-th time step is related to the DTFT at

the (i-1)-th time step as follows:

X; (wn) =X (wn) + xg 7/ (4.24)

where:

—im,iA - ~jo, (i-1DA
e J@, 10 =e]wnAte .la)n(‘ DAt (4.25)

since the quantity e“/““is constant for a given @, and a given At, the on-line
q y g

computation of X,(w,) requires a reasonably low computational effort. In addition, the

scheme requires only a fixed memory space for X(@) even if X(w) is updated at every

step. Furthermore, a very important characteristic of this technique is that the time
domain data from previous flight maneuvers — containing “good information” for PID
purposes — can still be used by simply iterating the calculation of the DTFT. Thus, this
DTFT approach allows for retaining all the PID results from previous time steps and, at
the same time, provides the necessary flexibility to follow changes in the system
dynamics. In terms of frequency range, the m frequencies over which the cost function is

evaluated can be selected as evenly spaced between @, andw,_, . Typically, the rigid

body dynamics frequency range for the considered aircraft can be selected allowing,
therefore, filtering out higher frequency noise and/or structural interference. The size of
the frequency range to be selected is related to the rigid body dynamics for the considered
aircraft; clearly a smaller range of frequency would decrease the computational effort.
Since the DTFT is recursively computed, the part of the algorithm requiring the most
computational effort is the inversion of the matrix Re(X"X). This inverse is computed
using the Singular Value Decomposition (SVD) for robustness and convergence issues.
In more details, for each vector @ of parameters to be estimated, one SVD (O(n3) flops)
of the matrix Re(X"X) (average size 6 by 6) has to be performed for each computational
step.

4.1.5 — PID Results

Throughout the flights of Phase #5 (as described in Section #3) 76 PID maneuvers
were executed; in particular flight data from 27 elevator doublets, 23 aileron doublets,
and 26 rudder doublets were collected by the OBC (as described in Section #2).

The PID analysis is performed in a Matlab/Simulink environment. As a first step,
flight data from a specific PID maneuver from a selected PID flight are fed into a
Simulink-based filter to remove sensor noise. The filter cut-off frequencies were
carefully selected to avoid removing significant portions of the WVU YF-22 rigid body
dynamics. For the LWR and FTR PID analysis the filtered data are fed into two
Simulink executable schemes. The general main Simulink PID scheme is shown in
Figure 4.1.

FromWolspace

T, 20 33 e e

_;”;;,E (5]
Ig

[t —» () (s |
(ot]

(0 IR
e ut]

=]

FTR-TD1

Figure 4.1 - Main Simulink PID scheme for LWR and FTR analysis

In particular the LWR and FTR PID methods receive as PID inputs the following
input and state variables: a, q, 8. (for the longitudinal PID), B, p, r, ®@, 8,, & (for the
lateral and directional PID). A similar Simulink scheme is used for the BLS PID analysis
using the same filtered data. Two slightly different version of the BLS algorithm are
used; for the 1* version (“BLS,”) the selected state and input variables are V, a, g, 8, and
© for the longitudinal PID analysis and B, p, 1, @, 3., &, for the lateral directional PID
analysis. Within a 2™ version of the BLS method (“BLS;”) the variables V, 0 and ® are
not used. A key difference between the two on-line methods (the LWR and the FTR
methods — although they are used off-line in this effort) and the BLS is in the
computation of the time derivative of the state vector. In fact, for the LWR and FTR
methods this derivative is either approximated by ‘(x(?)-x(¢-1))/T ° (as in the LWR case)
or evaluated in the frequency domain. The BLS method does not attempt to directly
compute this derivative, but, instead, directly identifies the discrete time equivalent of the
system, and therefore only needs the state at the next sampling time x;+;. This issue
makes the PID algorithm available in batch mode only; the system is then converted to
continuous time.

‘ Using all the different PID maneuvers the statistics of the results of the PID
analysis in terms of estimates of the (A,B,C,D) matrices are shown below.

Longitudinal PID Results (in terms of state variable matrices)

PID Method #1: BLS,
NOTE: The BLS, method uses measurements of V and 0.

14 -0.1183 -0.0036 0.0014 0.0000|[¥V 0.0078
al -15.4990 -2.2636 0.7204 0.0099 || « 1.0984 (4.26)
q -99.0799 -20.0915 -1.1617 -0.0121|| ¢ -19.0852 | °)
i 0.4991 0.1010 1.0057 0.0001] & 0.0954
14
Az=[—3.0907 -0.2253 -0.0274 0.0004] ¢ + -0.0438]5e 4.27)
q
K
PID Method #2: BLS;
. NOTE: The BLS; method does not use measurements of V and 0.
Y -1.7259 0.5199 0.3823
“\- “ls 5, 4.28)
q -17.9653 -1.5262 || q -20.1494
Az =[-0.1450 -0.0473][a]+[-0.1091]s, (4.29)
q

PID Method #3: FTR
NOTE: The FTR method does not use measurements of V and 0.

; -0.8764 0.7982 i 2.0277
%= “ls s, (4.30)
g| |-13.9989 -1.2866 | ¢ -16.2285

+[-0.1099]5, (4.31)

Az =[-0.0947 -0.0495][“
q |

PID Method #4: LWR
. NOTE: The LWR method does not use measurements of V and 0.

v [1.4737 03432 117452
. 034321 | 5, (4.32)
g |7 1-53702 37541 ¢ |7| -14.6898
Az=[0.2498 -0.0754][a]+[-0.0660]5e (4.33)
q

Note that the LWR PID longitudinal results were considered to be unacceptable since the
eigenvalues analysis of the linear model estimated by the LWR methods provided an
unstable eigenvalue, which is inconsistent with the stable longitudinal dynamic exhibited
by the WVU YF-22 aircraft.

Lateral-directional PID Results (in terms of state variable matrices)

PID Method #1: BLS,
NOTE: The BLS, method uses measurements of ®@.

B -0.0528 -0.1133 0.8380 -0.0599 (| B 0.8535 -1.5509
p _ 45.3713 -5.1260 4.2451 -0.5651 || p N 62.1884 24.4214 [6‘,
F -16.5618 -0.3595 -1.0507 0.0861 || r 2.4649 -20.2276 || o,
L) -0.2294 1.0258 -0.0211 0.0028 || ® -0.3132 -0.1245

} (4.34)

B
s,
Ay =[-0.0565 0.0005 -0.0042 -0.0001] © |+[-0.0044 -0.0229][5“} (4.35)
r

r

()

PID Method #2: BLS;
NOTE: The BLS; method does not use measurements of @.

B -0.0302 -0.1391 0.7184 || p 1.1188 -2.0754 »
p|=| 45.5843 -5.3692 3.1168 || p |+| 64.6908 19.4748 [5":' (4.36)
r -16.5943 -0.3225 -0.8788 || r 2.0841 -19.4745|- 7

B
s
Ay =[-0.0565 0.0005 -0.0044] p |+[-0.0039 -0.0239][5"] (4.37)

r

7

‘ PID Method #3: FTR
NOTE: The FTR method uses measurements of @,

B 1.2876 -0.1449 1.0814 -0.1078 || g 1.1336 -0.2903
p _ 52.0084 -5.3617 7.9742 -1.4111 || p . 62.0252 12.3251 [5(:
F -17.9250 -0.3459 -0.8854 0.1128|| r 2.2747 -20.4663 || o,
0} -0.5201 1.0536 -0.0797 0.0141 | @ -0.6203 -0.1233

] (4.38)

B
,
Ay =[-0.0571 0.0007 -0.0045 -0.0001] P11 10,0077 -0.0286] | (439
r o,

r

()

PID Method #4: L WR
NOTE: The LWR method uses measurements of @.

B [-13462 02277 03646 0.20817[B -3.2500 0.3439
p| | 127416 -15.6300 26.4494 -4.7652 || p .\ 163.5521 -278.4519 |[5,
‘ #1 [-11.9008 -3.2008 3.3423 -1.0534] » 35.0312 12.4106 || S,
® @

](4.40)
-0.1278 1.1564 -0.2657 0.0481 -1.6364 3.1458

B
. 5
Ay=[-0.0402 0.0001 -0.0027 0.0000] © |+[0.0011 0.4152][5“} (4.41)
r

r

[

Note that the LWR lateral directional PID results were also found to be less accurate than
the results from the other methods.

Using the above results in terms of state variable matrices, the PID performances
for each of the different approaches were assessed in terms of differences between
“actual” and “estimated” time histories. For this task the Simulink scheme shown below
in Figure 4.2 was used. Note that the comparison was not performed for the LWR
longitudinal dynamics.

exeoute f22ces after the sim
= 1:ploityl oC. iyl g2(, i yig0CG. D)

Figure 4.2 — Simulink block diagram for time histories comparison
with different PID methods

The scheme above features longitudinal linear state variable models from the
application of the BLS,, BLS;, and FTR methods along with lateral-directional state
variable models from the application of the BLS,, BLS;, FTR and LWR methods. The
same aircraft inputs (that is deflection of the control surfaces) were provided as inputs to
each of the linear models with the relative outputs being compared with the actual outputs
recorded from the flight test data. The results of this comparison phase - called
‘validation phase’ - are shown in the Figures 4.3 — 4.16 below in terms of comparison of
time histories for different longitudinal and lateral directional parameters for given PID
input-maneuvers (for elevators, rudders, and ailerons). Note that the LWR results were
not plotted for the longitudinal PID.

Elev ator Deflection (Degrees)

Longitudinal PID - Elevator doublet

18
367 3675 36

Time (Seconds)

1 1 1 |
8 3665 369 3695 3J70 3705 371

37158 372

Acceleration-Z (G)

Figure 4.3 — Longitudinal PID input

Longitudinal PID - Dynamic responses from different methods

3 T T T T T T] 1 L
-—- Flight Data
— BLSD

2r — BLSt
— FIR

1 1 1

Figure 4.4 — Comparison of ‘a,” responses

5 L
J67 3675 368 3685 3JB9 3895 I
Time {Seconds)

1 1
0 3705 371

1
3715 372

Alpha (Degrees)

-10

Q (Degrees/Second)

Longitudinal PID - Dynhamic responses from different methods

o —— Flight Data
/ Y — BLSD i

| — BLS1
\ — FIR

367

I] 1 1 1 1 1 1 1
3675 3B 3BBS5 B9 395 370 305 371 3715 372
Time {Seconds)

Figure 4.5 — Comparison of ‘e’ responses

Longitudinal PID - Dynamic responses from different methods

60

40

20

[

B0

~— Flight Data
— BLSO
— BLS1 n

1 1 1 1 1 1]
367 3675 3IBB 3BB5 369 395 370 3705 371 37156 372

Figure 4.6 — Comparison of ‘q’responses

Directional PID - Rudder doublet

Rudder/Aileron Deflection (Degrees)

T] ¥ T T 1

— Rudder
—— Aileron

1 | 1 1 | 1 1
402 403 404 405 406 407 408 409
Time {Seconds)

Figure 4.7 — Directional PID input

Directional PID - Dynamic responses from different methods

Acceleration-Y (G)

— Flight Data
— BLSO

— BLS1
— FTR
— LWR

1 1 1 1 1 i 1
402 403 404 405 406 407 408 409
Time {Seconds)

Figure 4.8 — Comparison of ‘a,’responses

P (Degrees/Second)

Directional PID - Dynamic responses from different methods

SD Ll T T T T T LI
— Flight Data
— BLSO

2r — BLS1
A FTR
LWR

Beta (Degrees)

-40 ! 1 1 L ! 1 1
401 402 403 404 405 406 407 408 409
Time (Seconds)

Figure 4.9 — Comparison of ‘B’responses

Directional PID - Dynamic responses from different methods

2DD T T T T T T 1
— Flight Data
— BLSO
150 | — BLS1]
— FIR
100 LWR
50
0 fe
-50
-100
-150
-200

1 1 1 1 H 1
401 402 403 404 405 406 407 408 409
Time (Seconds)

Figure 4.10 — Comparison of ‘p’responses

R (Degrees/Second)

Directional PID - Dynamic responses from different methods

150 T T] T L] T i
—— Filight Data
—— BLS0
100 + — BLS1 .
— FTR
LWR
50
0
-50
-100
-150
_200 L 1 1 1 1 1 1
401 402 403 404 405 406 407 408 408
Time {Seconds)
Figure 4.11 — Comparison of ‘r’responses
Lateral PID - Aileron doublet
8 T T T T T T 1]]
— Rudder
—— Aileron

Rudder/Aileron Deflection (Degrees)

-8 t 4 1 1 1
274 2745 275 2755 276 2765 277 2775 278 2785
Time (Seconds)

Figure 4.12 — Lateral PID input

279

Lateral PID - Dynamic responses from different methods

— Flight Data
0.5} —— BLSO i
— BLS1
02f === i
0151 — LWR i
0.1 .
o
>I_IJ.EJS .
c ‘
2 0 ‘1 E
© \ -
[0 h .\.
=0.05 - I f" ", T
LN et
T | ”\a""il'li"l'ﬂ\.;Ji‘lh’."if"""l
0.15 ("ll] it il
0.2 ¥ i
-0.25 .
1] 1 1 1 | 1 1 1
274 2745 275 2755 276 2765 277 2775 278 2785 279
Figure 4.13 — Comparison of ‘a,’ responses
Lateral PID - Different responses from different methods
—— Flight Data
6F — BLSO 1
— BLS1
— FTR
W
&
&
=1
)
11}
©
At]
1 1 i 1 1 1 | [1
274 2745 275 2755 276 2065 277 2775 278 2785 279

Figure 4.14 — Comparison of ‘B’ responses

P (Degrees/Second)

-100

R (Degrees/Second)

Lateral PID - Dynamic responses from different methods

100 T T T 1 T T T T LI
—— Flight Data
80+ — BLSO -
— BLS1

FTR
LWR

1 1 1

1 1 L 1) 1
274 2745 275 2755 276 2765 277 2775 278 2785 279
Time {Second)

Figure 4.15 — Comparison of ‘p’ responses

Lateral PID - Dynamic responses from different methods

30 T f T T 1 T T T 1
—— Flight Data
— BLS0
— BLS1

201 — FTR I
— LWR

-30 1 1 L 1
274 2745 275 2755 276 2765 277 2775 278 2785 279

Figure 4.16 — Comparison of ‘r’ responses

The next phase of the PID analysis consisted in the statistical analysis of the difference
(defined as ‘error’) between the estimated responses and the actual flight data (shown in
Figures 4.4-4.6, Figures 4.8-4.11, and Figures 4.13-4.16). The results of this statistical
analysis have been summarized in the Tables 4.1 and 4.2 below. Once again, the LWR
results for the longitudinal PID study have not been included.

Error Statistics BLS, BLS; FTR LWR

a, Mean 0.1609 0.1046 0.1090 -

a, Standard Deviation 0.3664 0.3746 0.3978 -

o Mean 0.5200 0.5189 0.5225 -

o Standard Deviation 1.2012 1.2465 1.8340 -

q Mean -2.3162 -1.1427 -1.1438 -

q Standard Deviation 6.0219 6.8101 7.9220 -
Table 4.1 - Statistical analysis of the longitudinal PID results

Error Statistics BLS, BLS; FTR LWR

a, Mean -0.0212 -0.0042 -0.0122 0.0026

a, Standard Deviation 0.0762 0.0727 0.0903 0.2678

B Mean 0.5315 0.4695 0.5166 0.6719

B Standard Deviation 1.0969 1.1634 1.4369 4.2687

p Mean -0.8158 0.4606 -0.5650 -0.4063

p Standard Deviation 10.6370 11.8932 13.8609 33.4578

r Mean 2.6997 0.5134 1.2415 0.5046

r Standard Deviation 6.9107 6.8191 6.9920 22.9703

Table 4.2 - Statistical analysis of the lateral-directional PID results

The data in the above tables can be used to calculate the RMS (Root Mean Square) values
of the error for both the lateral and longitudinal variables for the models determined from
the application of the different PID methods. The following table displays in percentage
the RMS of the error divided by the range of variation of for each variable.

Variable BLS, BLS; FTR LWR
a, 6.19% 6.01% 6.38% -
o 6.90% 7.12% 10.05% -
q 6.59% 7.06% 8.18% -
ay 5.63% 5.18% 6.49% 19.07%
B 4.56% 4.69% 5.71% 16.17%
P 5.02% 5.60% 6.53% 15.76%
r 9.31% 8.58% 8.91% 28.84%

Table 4.3 — PID error percentage for the different parameters

From an evaluation of the results in the above table it can be said that the
accuracy of the PID the quality of the estimation is in general moderately good with the
BLS; PID method providing the best results. The yaw rate estimation shows the largest

error, and this is probably due to low input excitation for the directional PID compared to
the longitudinal and lateral PID. Also it can be noticed that the accuracy of the results of
the FTR method — which is suitable for on-line real time applications — is somewhat
comparable to the accuracy of the both BLS PID methods — used for batch off-line
applications - with the LWR PID method providing by far the worst performance.

Although the PID analysis was outside the main technical scope of this project,
the PID study provided a fairly accurate state variable model of the WVU YF-22 aircraft
as a starting point for the design of the neural network fault tolerant control laws
described in the next paragraphs.

4.2 — Description of the Fault Tolerant Schemes
According to the research objectives, a fault tolerant flight control system needs
to perform:
- sensor failure detection, identification, and accommodation (SFDIA);
- actuator failure detection, identification, and accommodation (AFDIA).
Furthermore, the SFDIA task can be divided into:

- sensor failure detection, identification (SFDI), which monitors the degree of
deterioration in the accuracy of the sensors.

- sensor failure accommodation (SFA), which replaces the faulty sensor with an
appropriate estimation.
Similarly, the AFDIA task can be divided into:

- actuator failure detection and identification (AFDI), which detects significant
abnormalities and searches for the cause or for a set of probable causes;

- actuator failure accommodation (AFA), which determines on-line what actions
should be taken to recover the impaired aircraft.

Sensor failure detection and identification (SFDI) is critical when the
measurements from a failed sensor are used in the feedback loop of a control law. Since
the aircraft control laws need sensor feedback to set the current dynamic state of the
airplane, even slight sensor inaccuracies, if left undetected and un-accommodated for, can
lead to closed-loop instability, potentially leading to unrecoverable flight conditions. For
SFA purposes, most of today’s high performance military aircraft as well as commercial
jetliners implement a triple physical redundancy in their sensor capabilities. However,
when reduced complexity, lower cost, and weight optimization are of concern, an
analytical sensor redundancy approach is appealing.

In terms of the AFDIA problem, an actuator failure may imply a locked surface, a
missing part of the control surface, or a combination of both. In increasing order of
severity, an actuator failure modifies trim conditions and induces a dynamic coupling
followed by deterioration of dynamic stability potentially leading to unrecoverable flight
conditions. The final objective of the AFDIA is to achieve, in increasing order of
importance, a lower failure-induced handling qualities degradation rate, a lower mission
abort rate, and a lower aircraft loss rate. In recent years neural networks have been
proposed for identification and control of linear and non-linear dynamic systems. The
code developed by the WVU team features a SFDIA scheme based on on-line learning
neural networks along with an AFDIA scheme with an approach combining on-line
learning Multi-Layer Perceptron (MLP) neural networks and cross-correlation analysis.

The code also features a logic allowing distinguishing between the occurrence of a sensor
failure or an actuator failure. The problem of the integration between the SFDIA and the
AFDIA schemes is actually a very original topic in the fault tolerance literature.

The following properties of Multi Layer Perceptron Neural Networks (MLP NNs
-or- NNs) are critical for the design of these SFDIA and AFDIA schemes:

- Learning and adaptation: NNs can be trained using past recorded or simulated data
(off-line training) or current data (on-line learning).

- Applicability to non-linear systems: The applicability of NNs to non-linear systems
originates from their demonstrated mapping capabilities.

- Application to multivariable systems: NNs are multi-input, multi-output (MIMO)
entities and this, naturally, leads to their application to multivariable systems.

= Parallel distributed processing and hardware implementation: NNs have an inherent
parallel architecture, which, naturally, leads to high-speed parallel hardware
implementations.

To date, for MLP NNs the Back-Propagation algorithm (BPA), a gradient-based
optimization method, has been widely used as a training algorithm for the NN
architecture. However, limited learning speed and local minimum points are well-known
drawbacks of the BPA. Different researchers have proposed several algorithms and/or
procedures for dealing with these problems. The approach here used consists in using a
heterogeneous network, meaning that each neuron in the hidden and output layers of the
NN has the capability of updating the output range (upper and lower bounds U, L) and
the slope of the sigmoid activation function (T) as given:

fxULT)=U—f+L (4.42)
l+e /T
where ‘x’ is the same argument as in the BPA sigmoid activation function. The relative
learning algorithm has been named the Extended Back-Propagation algorithm (EBPA)
and has demonstrated substantial performance improvements with respect to the BPA in
terms of accuracy and learning speed (Napolitano1995). It should be emphasized that
different neural paradigms and/or other algorithms could be used (and have been used at
WVU) within the SFDIA and the AFDIA schemes.
The next sub-sections review the SFDIA and AFDIA schemes.

4.2.1- Neural Network-Based Sensor Failure Detection, Identification, and
Accommodation (SFDIA)

Using on-line learning NN estimators, the SFDIA problem can be approached by
introducing multiple feed-forward NNs trained on-line with the EBPA. Particularly, the
scheme consists of a main NN (MNN) and a set of n decentralized NNs (DNNs), where n
is the number of the sensors in the flight control system without physical redundancy.
The outputs of the MNN are the estimates of the same parameters measured by the n
sensors at time ‘%’, using measurements from time instant ‘4-/’to ‘k-m’; these estimates
are compared with the actual measurements at time ‘4’. For the i-th of the n DNNs, the
output is the estimate of the measurement of the i-th sensor, that is, the prediction of the
state at time ‘k’, using measurements from ‘%4-1’to ‘.-m’ to be compared with the actual

measurement at time ‘4’. The inputs to the i-th DNN are the measurements from any
number to up ‘n-1’ sensors, in other words, all the n sensors excluding the i-th sensor.

For SFD purposes, when a quadratic estimation error parameter from the MNN
exceeds some predefined threshold at a certain time instant, the scheme deduces that a
sensor failure may be occurring or has already occurred. Following the positive sensor
failure detection, the learning for each DNN is halted; then, a quadratic estimation error
parameter from the DNNs exceeding, at the same time instant, another threshold provides
the identification. For the accommodation phase, the i-th DNN output is used to replace
the measurement from the faulty sensor; i-th DNN output is also used as input to the MNN
for the purpose of allowing the MNN to provide detection capabilities until the end of the
flight. This output is also passed to all other DNNs using the i-th sensor as an input
parameter. This ‘double trigger’ approach using both MNN and DNNs has the purpose of
reducing the rate of false alarms in the FDI process. Several options can be added to this
scheme to add robustness for noisy measurements and/or intermittent sensor failures. For
example, a lower and a higher threshold level can be introduced for the DNNs. If the
estimation error for the i-th DNN exceeds the lower threshold once, the status of the
corresponding i-th sensor is declared “suspect” and the numerical architecture of the i-th
DNN is not updated. Should this status continue for a certain number of time instants
and/or the estimation error in successive time instants exceeds the higher threshold, then
the sensor is declared failed and is, therefore, replaced by the output from the i-th DNN.
Figure 1 shows a block diagram of the SFDIA process.

The code features failures for the pitch rate, the roll rate, and the yaw rate gyros.
The approach can be extended to handle failures to other sensors without any loss of
generality. As for any other FDIA approach, the following distinct capabilities are
critical:

- failure detectability and false alarm rate for SFDI purposes;

- estimation error for SFA purposes.
Two distinct parameters are used for sensor failure detection (SFD) purposes: MQEE and
OQEE. The first SFD parameter, MQEE, is defined as:

1 Num.of DNNs

MQEE(k) = > F ()0, o (K))? (4.43)

i=l

= % [(P() =B (B)) HG(R) =Gy (R))* +(r (k) ~TFoy ()’

The sensor failure identification (SFI) can instead be achieved by monitoring the absolute
value of the estimation error of each DNN, defined as:

DQEE, (k)=%(x(k)—fc(k))2 where x=p, g, andr (4.44)

For sensor failure accommodation (SFA) purposes, the following classic parameters for
the estimation error are instead evaluated:

DAEEX=;\1J—ﬁ(x(k)—£(k)) (4.45)

N
DVEEF%Z [(x(k)-%(k))-DAEE.} wherex=p,q, andr (4.46)

k=1

where DAEE and DVEE represent the DNN estimation error mean and variance
respectively. The ‘N’ refers to the number of time steps from the instant when failure of
sensor is declared to the end of the simulation.

In the case of a step-type sensor failure, the desirable detection capabilities are
provided by the peak value of the MQEE parameter regardless of bias magnitude.
However, in the case of soft sensor failures, particularly for ramp-type sensor failures, the
MQEE-criterion has not shown reliable detection capabilities. Therefore, an additional
parameter has been introduced to ensure desirable performance under conditions resulting
from any type of failures. The second SFD parameter, OQEE, is defined by:

Num.of DNNs
OQEE(K) = 3,0\ (B0 ()’ (447)

i=1

= % [(Bymn (K) =D pay (k))’ HGpww (K) =G pan (k))*+(#, 2w () —Fony (k)1

where Py s Gpan > and Tpy are the estimates of p, g, and r from the respective DNNS.

The need for the use of the parameter OQEE for SFD purposes is better described
by an analysis of a typical sensor failure. For example, when a pitch rate gyro fails, the
three parameters q(k), §,nn(k), and Gpy (k) within the ‘MQEE’ and ‘OQEE’ are
considered. At nominal conditions (k) and . (k) are estimated by the MNN and
g-DNN respectively to emulate the actual pitch rate gyro. In the event of a ramp-type g-
gyro failure, the §,,, tends to resemble the corrupted signals from the gyro. In fact,
since the pitch rate gyro is typically included as the input parameter in MNN, the MNN
architecture is updated with the failed g-gyro values during the on-line learning. As a
result, MQEE does not provide an accurate detection because the difference between q(k)
and q,pn (k) is relatively small despite the gyro failure. However, the output of the g-
DNN (g pxy (k) in Eq.(4.47) follows the nominal ‘q’ value (that is the value as it would be
without a failure) relatively well despite the sensor failure. This is because the -DNN
does not receive, as input data, measurements from the faulty sensor. The discrepancy
between G,y and {py in Eq.(4.47) causes, therefore, the peak of ‘OQEE’. This
problem does not occur for the step-type sensor failures. In fact, for these failures
G (K) s not consistent with the measurement from the failed sensor, which induces
therefore a peak for MQEE.

In general, it can be concluded that the MQEE provides better performance for
step-type sensor failures whereas the OQEE performs better for ramp-type of sensor
failures. The SFDIA Matlab code features a combined detection scheme using both

‘MQEE’ and ‘OQEE’. This provides more reliable detection capability for the SFDIA for
any type of failures.

A block diagram of the SFDIA scheme is shown in Figure 4.17 (Napolitano2000);
. a more detailed flow chart is given in Figure 4.18 (Napolitano2000). Figure 4.18 shows
also the interaction with the AFDIA scheme described in the next paragraph.

Ackial value of

pamedes§ & #9a1 ¥

. Auh and g caneladan s
nepllew pallle

NN aufou : et -
o porameler #1 #2430 %0 I-Aclﬂior Fafl. ok (AFI) ’
A L .
'l SFMZ hFI.li : PIJ'!TIEiTS H.e0 NOTE . ME'F::E;:E pu:li‘.!
i 2yt el S NN reples Sermard? o 5FA
Aol valueal Aot velueal Ackia value af
mramele 1 2% Il pemedy#2a perameky #a
SFDIA# woff SFDIA92 w off SFD#3 of
DN autoud : —- DNN#2 arpud DN arfput - .
esimerie ol parameter #1 " vl of pramee 28] "’""“ o perameter
¥ , ai¥ T" ¥
On-line Joefming Ortling Jesring On-line edming
N1 j Ni2 N3
‘/{pui :paamelers 4241 . /rpul :paramelars ¢4 hp :perarmeiers 142
ram'ket fo'ky fram Ktk 1ram‘k-"]u'lT'
SFDA# w ol ==——%<l SFD A3 of
— SFDIAdZ = o
Sensor #1 Sensor §2 Sansor K3
SFDIA#! = cf SFDIA#Z = off SFDR#3 = off

NOTE : For simplicity purpases, anly 3 sensors are consigered,

NOTE: Figure modified from ‘Portrait’ format

Figure 4.17 — General Block Diagram of the SFDIA Scheme

Monitoring Main Quadratic Estimation Error (QEE), Output
QEE, and Decentralized QEEs

current status Yes:

“fail" ?

Monitoring
intermittent sensor
failure
S X-Sensor's Send x-DNN

No—» estimate to flight

computer

No

Yes

Sensor Failure
Detection

x-DNN resumes learning
Send x-sensor data to

MQEE > Thresh_M flight computer

or
OQEE > Thresh_O

No
Observation y
phase Yes Send x-sensor data
x-DNN stops learning to flight computer
Send x-DNN estimate to flight computer in
place of x-sensor
® :
| Auto and cross correlation analysis Posive—» AFI andAFA
\
l
‘ Negative
Sensor Failure
Identification False Alarm
DQEE, > Thresh #1 End observation period
(number of times) N x-DNN resumes learning
or Send x-sensor to flight
DQEE, > Threshi#2 computer

Sensor Failure

Accommodation Y:'s

End observation period
Declare failure for x-sensor
Send x-DNN estimate to flight computer
in place of x-sensor

Figure 4.18 — Functional flow chart of the SFDIA scheme

4.2.2. - Neural network and cross/auto correlation-based Actuator Failure
Detection, Identification, and Accommodation (AFDIA)

The occurrence of any actuator failure also implies that the parameter ‘MQEE’
defined above exceeds a selected threshold. Thus, the actuator failure detection (AFD)
can be achieved by spotting substantial changes in the aircraft angular velocities
following any type of actuator failure. Next, the actuator failure identification (AFI) can
be performed by analyzing specific cross-correlation functions. In general, for two
random processes Y(k) and X(k), the cross-correlation and the autocorrelation functions
are defined by:

Ry (n)=E[Y (k)X (k +n)} R, = E[X (k)X (k +n)] (4.48)

For AFI purposes different sets of cross-correlation functions can be used, taking
advantage of the fact that any type of actuator failure on any aircraft control surface
involves a loss of symmetry. A dynamic coupling between longitudinal and lateral-
directional aircraft dynamics then follows this loss of symmetry. The use of cross-

correlation functions relative to the angular velocities (R, ,R,,,R,,) and to the Euler’s
angles (Rgg,Ryy,Rgy) has been tested with success. Furthermore, different auto-

correlation functions, in particular R, R, , have shown capabilities as identification

tools. It should be underlined that for each of these cross and auto-correlation functions
the selection of detection thresholds is very critical for a desirable trade-off between false
alarm and failure detectability.

Following a positive AFD and AFI, the immediate objective is to regain
equilibrium and to compensate for the pitching, rolling, and yawing moments induced by
the failure. Toward this goal, three separate NN controllers are introduced: a NN pitch
controller, a NN roll controller, and a NN yaw controller ([Napolitano1995]).

The output of the NN pitch controller (NNC pitch) is the compensating deflection
for the remaining healthy elevator (elevator failure case) or the symmetric elevators
(aileron and/or rudder failure case). The on-line learning for the NN pitch controller is
initiated as the simulation starts. Under nominal conditions, the controller is trained to
emulate the actual control deflections for the symmetric elevators. Therefore it
minimizes the cost function:

int‘:hnam =(§HL,R _SHL,R) (4'49)

Following a positive AFD and AFI showing the need for a longitudinal AFA, the
on-line learning NN pitch controller switches its target to minimize the cost function:

intchAFA =kLong_l(q - qref)+kLong_2(€ - aref)+kLong_3(an - anmf) (450)
where q,,=0, 0,4 =0,,,and 2, =1.

It is interesting to note that this cost function resembles a controller with a PID
error formulation. It should also be mentioned that the on-line learning at nominal

conditions (that is with the AFDIA scheme inactive) has no physical meaning; in fact, the
NN pitch controller is just “emulating” control deflections at nominal conditions.
However, this procedure has shown the benefit of improving the transient response by
having the NN output within the same order of magnitude of the NN output necessary
when the AFA process is turned on following a positive AFD and AFL

Within the AFDIA scheme the NN roll and yaw controllers operate in a similar
fashion. Under nominal conditions, these controllers learn to replicate the actual control
deflections for the ailerons and the rudder by minimizing the cost functions:

Jroll,,o,,, =(6AL‘R _gAL,R) (45 1)

J ya, <(B3=01) (4.52)

Following positive AFD and AFI, the on-line learning NN roll and yaw
controllers switch their targets to minimize the cost functions:

S rottyyy =Krat 1(P = Prog kg » (P-0.) (4.53)

JyawA,.-A =kDir_1(r - rref)+ kDir_Z ('// - V/ref) (454)
where the p .= ¢, = I, = 0 at trim conditions.

Note that different cost functions could be selected at post-failure conditions. Also, it
should be emphasized that time-varying coefficients Kiong i'ss Kiat is, Kair s could be
introduced for an adaptive formulation of the cost functions at post-failure conditions
related to the outcome of the EBPA computations. The complexity of the neural
algorithms would then substantially increase.

Figure 4.19 shows a block diagram of the AFDIA process while an overall functional
block diagram of the SFDIA/AFDIA software is shown in Figure 4.20.

v

Flight Control System
Sensors Data

Set 'k=k+1'

———| False Alarm |<—No

Set 'k=k+1’

'MQEE’ > Thresh_M ?

Yes

SFA

y
Systolic Systolic
memory memory
locations : locations :
'k-1' to 'k-m’ 'k-1' to 'k-N'
No MNN inputs i
| Update
R .(k), R (k), R, (K),
Pq v qr
MNN R, (k)
(for SFD and AFD)
Estimates of 'p’, :
'q",'r" at time 'k’ Update
Measurements of Sum lqul’ Sum |Rp,|
'p','q’,"r' at time 'k’ Sum |Rquv Sum |R, |
over N+1 steps

Yes—————}

R, R,R,R
thlegshoplrd alfarllysig

Negative——

Positive

Actuator Failure Identificatikon
through IR |, IR, I, IR, IR,

Actuator Failure Accommodation
Pitch NNC - Roll NNC - Yaw NNC

Figure 4.19 — Block Diagram of the AFDIA Scheme

AIRCRAFT DYNAMICS SIMULATION
FOR FDIA TESTING PURPOSE

Display

- Sensors
Turbulence Noise
™ AIRCRAFT ¥ >
Coefficients ‘I
L Actuators Sensors >
Failure Ly Failure
Simulation Simulation .'
Trimming ‘

More »
= b » Outputs |
Pilot&lrput

Trimming Command
y N A v A y
Input Actuators Failures Output
Recording Recording Recording Recording

Figure 4.20 — Functional Block Diagram of the SFDIA/AFDIA Simulation Software

4.2.3 - Mathematical modeling of the SFDIA and the AFDIA conditions
As stated in a previous section, the SFDIA scheme is simulated for failures of the

pitch, roll, and yaw rate gyros. Therefore, the NN-based SFDIA scheme uses one main
NN (MNN) with three decentralized NNs (DNNs). Note that input parameters of g-DNN
do not include pitch rate measurements. Similarly, the p-DNN and the r-DNN do not use
‘p’ and ‘r’ as input parameters, respectively.

A generic sensor failure for the parameter x; can be modeled as:

xfailure,i = xnom,i + pni (455)

where n, is the direction vector for the i-th faulty sensor, and p is the magnitude of the
failure which can be positive or negative :
- for step-type sensor failures, n =1;

e for (tfl StStfz)’ n =1 for(tthz)

- for ramp-type sensor failures, n, =
t—ty
where t;, and t,, indicate the initial and final time instant of ramp-type sensor failure,
respectively. The different types of sensor failures considered in this study based on the
above formula are represented by:

Type #1 - large instantaneous bias;

Type #2 - small instantaneous bias;

Type #3 - large drifting bias with slow transient period,
Type #4 - large drifting bias with fast transient period;
Type #5 - small drifting bias with fast transient period;
Type #6 - small drifting bias with slow transient period.

The AFDIA scheme can be simulated for failures of the actuators of stabilators
(elevators), ailerons, and rudder. The AFDIA scheme consists of three NN controllers (a
longitudinal controller, a directional controller, and a lateral controller) and shares the
MNN with the SFDIA. The maximum control surface deflections in the simulation code
are + 20 degrees for the stabilators and ailerons and + 30 degrees for the rudder. The
code also models the actuation rate for each of the control surfaces with a maximum
deflection rate of = 20 deg/sec.

The considered actuator failures are given by:

- stuck R/L stabilator at trimmed/untrimmed angular deflections;
- stuck R/L ailerons at trimmed/untrimmed angular deflections;
- stuck R/L rudder at trimmed/untrimmed angular deflections.

4.3 - The SFDIA/AFDIA Matlab code
A Matlab/Simulink code was developed for the simulation of the fault tolerant
schemes described above. For the execution of the code the user is required to have the
following Matlab toolboxes:
- Control Toolbox;
- Signal Processing and DSP Blockset toolboxes;
- Simulink.
It is also required by the user to install all the software on the hard-drive in the
directory C:\S_AFDIA. The code is run by executing the ‘main.m’ Matlab file. The code
was designed to perform the following tasks.

Task #1 — Dynamic simulation only (at nominal and actuator failure
conditions) — The neural learning is turned off for the SFDIA and AFDIA neural
networks.

Task #2 — Dynamic simulation — Simulated on-line learning for the SFDIA
and AFDIA neural networks. Flight at nominal conditions (without sensor and/or
actuator failures)

Task #3 — SFDIA simulation. “Injection” of sensor failures within user-defined
scenarios.

Task #4 — AFDIA simulation. “Injection” of actuator failures within user-
defined scenarios.

Task #5 — Simulation of the SFDIA/AFDIA integration. “Injection” of a
sequence of sensor and actuator failures within a variety of user-defined scenarios.

The software is organized with the following sub-directories:

S_AFDIA
TASK_1
SAVED SIMULATIONS

NEW_SIMULATION
TASK 2
SAVED_SIMULATIONS
PRE_DESIGNED
NEW_SIMULATION
TASK_3
SAVED SIMULATIONS
PRE_DESIGNED
NEW_SIMULATION
TASK_ 4
SAVED SIMULATIONS
PRE_DESIGNED
NEW_SIMULATION
TASK_5
SAVED_SIMULATIONS
PRE_DESIGNED
NEW_SIMULATION

4.3.1 - Task #1 — Dynamic simulation only (at nominal and actuator failure

conditions)
The simulation of the WVU YF-22 linearized dynamics is provided at a given

point in the (limited) flight envelope — typically airspeed=50 ft/sec and altitude=1,000 ft.
In this task the simulations can be run at both nominal and actuator failure conditions,
with the user able to select specific failure scenarios.

First, the user is asked to enter the total simulation time with a range between 0
and 2000 sec. Next the user is prompted with the following menu:

>MANEUVER TYPE

> 1 — Pre-designed Longitudinal Maneuver (at nominal conditions)

> 2 — Pre-designed Lateral/Directional Maneuver (at nominal conditions)
> 3 — Pre-designed Maneuver with Actuator Failure

Should the user select option #1 or #2 generic doublet-type maneuvers are performed.
Should option #3 be selected the user is prompted the menu:

> ACTUATOR FAILURE SIMULATION
> 1 — Pre-designed Failure
> 2 — User-defined Failure

If option #1 is selected the user can choose between four different failure scenarios.

If option #2 is selected the user is prompted to provide additional information on the time
and the type of actuator failure he/she wishes to simulate. Note that to monitor the failure
induced dynamic coupling the user has the option of entering the size of the window for
the auto correlation functions Reo and Ree. By introducing fairly simple modifications

in the code the user has the option of using different identification schemes based on the
use of the cross-correlation functions (R, , R, , R).

Prior to the simulation the user is also asked whether he/she wishes to add system
and/or measurement noise modeled with zero mean and the standard deviation provided
in Table 4.4 and Table 4.5. In particular, the user is prompted for a percentage coefficient
for the noise level with a mid-range value associated with a nominal level of noise.
Should the user select a zero percentage coefficient the simulation will be noise free.

Parameter Standard Deviation
Airspeed indicator 4 ft/s
Roll rate gyro 0.1 deg/s
Pitch rate gyro 0.1 deg/s
Yaw rate gyro 0.1 deg/s
Longitudinal accelerometer 0.5 ft/s°
Lateral accelerometer 0.5 ft/s*
Directional accelerometer 0.5 ft/s°
Attitude pitch gyro 0.4 deg
Attitude roll gyro 0.4 deg
Attitude yaw gyro 0.4 deg
Altitude indicator 10 ft
Angle of attack 0.6 deg
Sideslip angle 0.6 deg

Table 4.4 — Standard deviation for the measurement noise

Parameter Standard Deviation
@ 0.1 deg
’Bgust 0.1 deg

Table 4.5 — Standard deviation of system noise

Following these selections the dynamic simulation is performed with results
shown through different subplots with the following grouping:

- control surface deflections (deg);

- angular velocities (deg/sec);

- Euler angles (deg);

- airspeed (ft/sec), alpha (deg), beta (deg), and altitude (ft);

- trend of the auto correlation functions Roe, Ree with the user defined window size.

At the end the user is asked whether to save the simulation data in the sub-directory

C:\S_AFDIA\TASK _1\SAVED_ SIMULATIONS in the default file ‘simulation_all.mat’.
If the user wishes to save different simulations he/she should change the name of the
default file in the code (at the end of the file ‘simulation_only.m’) to avoid overwriting.

4.3.2 - Task #2 — Dynamic simulation — Learning on for the SFDIA and AFDIA
neural networks.

The objective for the code for this task is to allow the learning of the different
NNs used for the SFDIA and AFDIA schemes at nominal flight conditions, that is
without the occurrence of actuator and/or sensor failures.

First, the user is asked to enter the total simulation time with a range between 0
and 2000 sec with a range between 0 and 2000 sec. As in Task #1 the user is also asked
whether he/she wishes to add system and/or measurement noise modeled as described
above. Should the user select a zero percentage coefficient for both the system and the
measurement noise, the simulation will be noise free.

Next, the user is shown a list of the different SFDIA and AFDIA neural networks
(MNN, p_DNN, q DNN, r_DNN, roll NN controller, pitch NN controller, and yaw NN
controller). ~These NNs are stored in the C:\S_AFDIA\TASK 2\PRE TRAINED
directory and have undergone an extensive period of training. The user should be aware
that the training phase, especially for large size NNs , such as those listed above, can take
several hours and/or days.

Next the user is prompted with the following menu:

> SELECTION OF NEURAL NETWORKS
> 1 — Pre-trained NNS
> 2 — Un-trained Random NNS

If option #1 is selected the user would not have degrees of freedom in setting the
neural parameters. In fact the code will continue on the same SFDIA and AFDIA NNs
listed above.

If option #2 is selected, the user will be asked to enter in sequence:

- number of neurons in the hidden layer;

- learning rate (either constant or linearly decreasing);

- momentum rate (either constant or linearly decreasing).
The user will be shown recommended values or range of values for each of the above
parameters. Note that single hidden layer architectures have been “imposed” for
computational simplicity purposes. This input procedure has to be repeated for each of
the SFDIA NNs and for each of the AFDIA NNs. Note that the individual inputs and
outputs of the SFDIA and AFDIA NNs can only be changed in the software.

Following the selection relative to the neural training of the NNs the user should
then proceed to provide information about the dynamic simulation in a totally similar
format as in Task #1. The user should be aware that the simulation would be
substantially slower due to the addition of the neural computations.

At the end of the simulation of the learning the software proceeds to display the
neural outputs such as:

- p,p_DNN, p MNN

- q,q_DNN, g MNN

- r1,r_DNN,r MNN

- delta_e, delta_e_nn_long
- delta_a, delta a nn_lat

- delta_r, delta r nn_dir
in addition to the statistical parameters of the learning described in the previous section of
this document (MQEE, OQEE, q QEE, r QEE, p_QEE). The longitudinal and lateral
directional flight parameters are also displayed.

After all the time histories of the NNs learning errors and the simulation data are
displayed, the user will be asked whether he/she wishes to save all the simulation (the
flight data and the neural architectures) in the default files and ‘nnet simu_learn.mat’ and
‘simu_learn_all.mat’ in the directory C:\S_AFDIA\TASK_2\SAVED_ SIMULATIONS.
If the user wishes to save different simulations he/she should change the name of the
default file in the code (at the end of the file ‘simu_learn.m’) to avoid overwriting.

4.3.3 - Task #3 — SFDIA simulation.

The code for this task is conceptually identical to the code of the previous task,
with the only difference being the “injection” of simulated sensor failures.

The user is first prompted the following menu:

> SFDIA SCENARIO
> 1 - Pre-selected failures with pre-selected SFDIA NNs and thresholds
> 2 - User-defined failures with user-defined SFDIA NNs and thresholds;

If option #1 is selected, the code will guide the user through the set-up of a
simulation with given failure scenarios and given NNs and thresholds, displayed on the
screen prior to the simulation. The user has the option to set the simulation time, the
failure time, and the levels of system and measurement noise throughout the simulation.

If option #2 is selected, the user will have more degrees of freedom in setting-up
the simulation. In fact, the code will guide the user through a set of menus for the
selection of the different failure parameters. The user can also select to start from new
SFDIA NNs and thresholds if he/she wishes to do so — OR — start from pre-trained
SFDIA NNs and/or previously selected SFDIA thresholds. As for option #1, the user can
select the simulation time, the sensor failure time, as well as the level of system and
measurement noise.

After the selection of all the different parameters, the simulation is conducted.
The sensor failure detection time should be displayed on the screen. At the end of the
simulation of the learning the software proceeds to display the neural outputs in addition
to the statistical parameters of the learning described in the previous section of this
document (MQEE, OQEE, q QEE, r QEE, p QEE). The longitudinal and lateral
directional flight parameters are also displayed showing the effects of the sensor failure
and the subsequent SFDIA process.

After all the time histories of the NNs learning errors and the simulation data are
displayed, the user will be asked whether he/she wishes to save all the simulation (both
the flight data and the neural architectures) in the default files and ‘sfdia_all.mat’ and
‘nnet_sfdia.mat’ in the directory C:\S_AFDIA\TASK 3\SAVED_SIMULATIONS. If the
user wishes to save different simulations he/she should change the name of the default
file in the code (at the end of the file ‘sfdia.m) to avoid overwriting.

4.3.4 - Task #4 — AFDIA simulation.

Task #4 is conceptually identical to Task #3, except that it deals with the actuator
failure and the AFDIA scheme in lieu of the sensor failure problem and the SFDIA
scheme. It should be recalled that the two schemes share the same MNN for failure
detection purposes.

From an /O point of view the codes for Task #3 and Task #4 are very similar. In
fact, the user is first prompted the following menu:

> AFDIA SCENARIO
> 1 - Pre-selected failures with pre-selected AFDIA NNs and thresholds
> 2 - User-defined failures with user-defined AFDIA NNs and thresholds;

If option #1 is selected, the code will guide the user through the set-up of a
simulation with given failure scenarios and given NNs and thresholds, displayed on the
screen prior to the simulation. The user has the option to set the simulation time, the
actuator failure time, and the levels of system and measurement noise throughout the
simulation.

If option #2 is selected, the user will have more degrees of freedom in setting-up
the simulation. In fact, the code will guide the user through a set of menus for the
selection of the different failure parameters. The user can also select to start from new
AFDIA NNs and thresholds if he/she wishes to do so — OR — start from pre-trained
AFDIA NNs and/or previously selected AFDIA thresholds. As for option #1, the user
can select the simulation time, the actuator failure time, as well as the level of system and
measurement noise.

It should be recalled that the code features an original aerodynamic modeling of
the effects of actuator failures involving loss of control surfaces.

After an appropriate selection of all the different parameters, the simulation is
conducted. The actuator failure time should be displayed on the screen. At the end of
the simulation of the learning the software proceeds to display the neural outputs and the
trend for the auto-correlation functions Repe and Ree. The longitudinal and lateral
directional flight parameters are also displayed showing the effects of the actuator failure
and the subsequent AFDIA process with the re-gain of the equilibrium conditions.

After all the time histories of the NNs learning errors and the simulation data are
displayed, the user will be asked whether he/she wishes to save the simulation data (both
the flight data and the neural architectures) in the default files and ‘afdia_all.mat’ and
‘nnet_afdia.mat’ in the directory C:\S_AFDIA\TASK 4\SAVED_SIMULATIONS. If
the user wishes to save different simulations he/she should change the name of the default
file in the code (at the end of the file ‘afdia.m) to avoid overwriting.

4.3.5 - Task #5 — SFDIA/AFDIA simulation.

Task #5 represents the conceptual merge between Task #3 and Task #4. In fact
the code in Task #5 requires all the input information as in the previous two tasks.

The SFDIA/AFDIA integration issue (Napolitano2000) has not been extensively
considered in the technical literature. There is a realistic possibility that a sensor failure

could be interpreted as an actuator failure and vice-versa. There are two critical issues to
. understand the SFDIA/AFDIA integration proposed in this code:

- the dynamic signatures of actuator failures on the trend of the described auto and/or
cross correlation functions is more clear and pronounced than the signatures by
sensor failures;

- the dynamic signatures of sensor failures on the values of the quadratic performance
indices of the neural learning is more clear and pronounced than the signatures by
actuator failures.

The identification scheme between a sensor or an actuator failure will take
advantage of these characteristics.
First, the user is first prompted the following menu:

> SFDIA and AFDIA SCENARIOS
> 1 - Pre-selected sensor and actuator failures with pre-selected SFDIA and AFDIA NNs
and thresholds

> 2 - User-defined sensor and actuator failures with user-defined SFDIA and AFDIA
NNs and thresholds;

As for the codes for Task #3 and #4, if option #1 is selected, the code will guide
the user through the set-up of a simulation with given failure scenarios for both actuator
and sensor and given NNs and thresholds, displayed on the screen prior to the simulation.
The user has the option to set the simulation time, the failure time, and the levels of

‘ system and measurement noise throughout the simulation.

If option #2 is selected, the user will have more degrees of freedom in setting-up
the simulation. In fact, the code will guide the user through a set of menus for the
selection of the different failure parameters.

An important detail is that the user should set the sensor failure before the
actuator failure. There is nothing unique about this set-up; the reason is that it might be
difficult to visualize the effects of the SFDIA when conducted after the AFDIA since the
only function of the AFDIA task is to bring back the aircraft to equilibrium conditions.
As in previous tasks, the user can also select to start from new SFDIA and AFDIA NNs
and thresholds if he/she wishes to do so — OR — start from pre-trained SFDIA and AFDIA
NNs and/or previously selected SFDIA and AFDIA thresholds. As for option #1, the
user can select the simulation time, the sensor/actuator failure time, as well as the level of
system and measurement noise.

After an appropriate selection of all the different parameters, the simulation with
both failures is conducted. The exact time for sensor and actuator failures should be
displayed on the screen. It should be recalled that the code is fairly slow due to the very
heavy computational effort on the top of the already “computationally-slow” Matlab
environment. At the end of the simulation of the learning the software proceeds to
display the outputs of the neural controllers, the statistical parameters of the SFDIA NNs
and the trend for the auto-correlation functions Repe, Ree. The longitudinal and lateral
directional flight parameters are also displayed showing the effects of the sensor/actuator
failures and the subsequent SFDIA/AFDIA process with the aircraft re-gaining an

. equilibrium condition.

After all the time histories of the NNs learning errors and simulation data are
displayed, the user will be asked whether he/she wishes to save all the simulation (both
the flight data and the neural architectures) in the default files and ‘safdia_all.mat’ and
‘nnet_safdia.mat’ in the directory C:\\S_AFDIA\TASK S5\SAVED_SIMULATIONS. If
the user wishes to save different simulations he/she should change the name of the default
file in the code (at the end of the file ‘s_afdia.m’) to avoid overwriting.

References (Section #4)
[Atkeson1997a] - Atkeson, C. G., Moore, A. W., & Schaal, S. "Locally Weighted
Learning." Artificial Intelligence Review, 11:11-73, 1997
[Atkeson1997b] - Atkeson, C. G., Moore, A. W., & Schaal, S. "Locally Weighted
Learning for Control." Artificial Intelligence Review, 11:75-113, 1997
[Hoak1978] - Hoak, D.E., Finck, R.D., “USAF Stability and Control DATCOM”,
AFWAL-TR-83-3048, October 1960, Revised 1978
[iff1972] — Iliff, K.W., Taylor, L.W., “Determination of Stability Derivatives From
Flight Data Using a Newton-Raphson Minimization Technique”, NASA TN D-6579,
1972
[1liff1976] - Tliff, K.W., Maine, R.E., “Practical Aspects of Using a Maximum Likelihood
Estimation Method to Extract Stability and Control Derivatives From Flight Data”,
NASA TN D-8209, 1976
[Klein1978] - Klein, V. “Aircraft Parameter Estimation in Frequency Domain”,
Proceedings of the 1978 AIAA Atmospheric Flight Mechanics Conference, AIAA paper
78-1344, Palo Alto, Ca, August 1978
[Ljung1987] - Ljung, L. “System Identification : Theory for the User”, Prentice Hall,
Englewood Cliffs, NJ, 1987
[Maine1986] - Maine, R.E., Iliff, K.W., “Identification of Dynamic Systems: Theory and
Formulation”, NASA RF 1168, June 1986
[Mendel1973] - Mendel, J.M. “Discrete Techniques of Parameter Estimation”, Marcel
Dekker, New York, NY, 1973
[Morelli1997] - Morelli, E.A. “High Accuracy Evaluation of the Finite Fourier Transform
Using Sampled Data”, NASA TM 110340, June 1997
[Morelli1998] - Morelli, E.A. “In Flight System Identification”, Proceedings of the 1998
AIAA Atmospheric Flight Mechanics Conference, AIAA paper 98-4261, Boston, Ma,
August 1998
[Morelli1999] - Morelli, E.A. “Real-Time Parameter Estimation in the Frequency
Domain”, Proceedings of the 1999 AIAA Atmospheric Flight Mechanics Conference,
AIAA paper 99-4043, Portland, Or, August 1999
[Napolitano1995] - Napolitano, M.R., Naylor, S., Neppach, C., Casdorph, V. “On-Line
Learning Non-Linear Direct Neurocontrollers for Restructurable Control Systems”,
Journal of Guidance, Control and Dynamics, Vol. 18, No. 1, pp. 170-176, January-
February 1995
[Napolitano2000] - Napolitano, M.R., Younghwan A., Seanor, B., “A Fault Tolerant
Flight Control Systems for Sensor and Actuator Failures Using Neural Networks”,
Aircraft Design Journal, Pergamon Press, Volume 3 (2000), pp. 103-128.
[Neter1996] - Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. “Applied
Linear Regression Models”, 3" Edition, Richard D. Irwin, Inc., Burr Ridge, Illinois,
1996.

Section #5»

Formal Specification of Requirements for Analytical
Redundancy Based Fault Tolerant Flight Control Systems

Section #5 - Table of Contents

List of Symbols (Section #5)

5.1 - Definition of the Problem

5.1.1 - Fault Tolerance in Fly-By-Wire Flight Control Systems

5.1.2 - Fault Tolerance and Analytical Redundancy

5.1.3 - Certification of Analytical Redundancy based Fault Tolerant Flight
Control Systems

5.1.4- Research Objectives

5.2 - Definition of the Approach

5.2.1 - Formal specification of system requirements
5.2.2 - Specification Approach

5.2.3 - Scope of Fault Tolerance Requirements
5.2.4 - Specification Language: Relational Algebra
5.2.5 - Pilot Application

5.3 - Results

5.3.1 - Requirements Hierarchy
5.3.1.1 - Functional and Operational Requirements
5.3.1.2 - Design Constraints
5.3.1.3 - Environment Description

5.3.2 - Analysis of the Fault Tolerance Requirements

5.3.3 - Structure of the Formal Specification
5.3.3.1 - Specification of System Composition
5.3.3.2 - Specification of System Operating Conditions
5.3.3.3 - Specification of Functional Requirements
5.3.3.4 - Operational Requirements
5.3.3.5 - Introduction of Design Constraints

5.4 - Case Studies

5.4.1 — Case Study #1: Heading Hold (HH) System
5.4.2 — Case Study #2: Roll Rate Gyro Failure

5.5 - Conclusions

References (Section #5)

List of Symbols (Section #5)

Acronyms

AR Anaiytical Redundancy

FBW “Fly-By-Wire

FCS Flight Control System

FTC Fault Tolerance Capability

FTFCS Fault Tolerant Flight Control System

UAV Unmanned Air Vehicles

5.1. — Definition of the Problem

S.1.1 - Fault Tolerance in Fly-By-Wire Fiignt Control Systems

The use of Fly-By-Wire (FBW) digital flight control systems is playing a more
and more prominent role in commercial aviation. In FBW technology electronic devices
coupled to a digital computer replace conventional mechanical controls. The net result is
a more efficient, easier to control aircraft. However, this increased automation goes in
parallel with an increased complexity of flight control systems with obvious
consequences on reliability and safety. A FBW flight control system is made up of
several subsystems including mechanical, electronic, and software components. Each of
these subsystems may fail during flight; thus flight control systems must meet strict fault-
tolerance requirements. The standard solution to achieving fault tolerance capability is
the adoption of a multi-string architecture. This architecture is based on physical
redundancy, that is redundant units working in parallel and a voting scheme that
disengages a unit when identified to be faulty. Typically triple and quadruple string
architectures are featured within flight control systems for both military and commercial
aviation [Yeh96], [Favre94]. However, multi-string architectures further increase the
complexity of the system, induce a reduction of overall reliability, bind to closer
maintenance schedule, and require larger budgets. These factors have induced in recent
years an increased interest toward alternative approaches to achieving fault tolerance in
flight control systems.

Similar interest comes from Unmanned Aerial Vehicle (UAV) applications.
Starting in the late '80s a variety of UAVs have been built for either military or scientific
purposes. They vary significantly in size, mission profile, and payload weight carrying
capability. With some of them having a payload weight below 20 lbs and dimensions
below 15 feet it is clear how weight and room requirements are a major issue. Despite

costs, complexity, and weight drawbacks physical redundancy is adopted to achieve fault
tolerance.

3:1.2 - Fault Tolerance and Analytical Redundancy

Fault tolerance requires some form of redundancy within the system; redundancy
provides alternative means to perform a specific task, thus making the system capable of
continuing operation despite of localized malfunctions, i.e. of tolerating faults. Two
different redundancy approaches are adopted in closed loop system: physical redundancy
and analytical redundancy. Physical redundancy is based on a multi-channel architecture
consisting of three or more intercommunicating systems that are able to work
independently. A voting mechanism checks for consistency among the redundant
components of each channel. Analytical redundancy identifies with the functional
redundancy in the system dynamics. It does not require additional hardware; fault
tolerance is achieved by means of software routines that process sensor outputs and
actuator inputs to check for consistency with respect to the analytical model of the
system. If an inconsistency is detected, the faulty component is isolated and the control
law is reconfigured accordingly. Preserved observability allows estimating the
measurement of an isolated (allegedly faulty) sensor, while preserved controllability

allows controlling the system with an isolated (allegedly faulty) actuator. Numerous
survey papers and books [Patton89], [Chen99], [Patton00] discuss theoretical and
practical aspects of adopting the analytical redundancy approach to achleve fault
tolerance. :
The conceptual structure of analytical redundancy based fauh dCLCCtIOI‘l and
identification systems consists of two stages: the residual generation stage and the
decision making stage [Chow80]. The residuals provide a measure of the inconsistency
between the actual behavior of the system and the system analytical model. Residual
values close to zero imply a fault free system; on the other hand, residual values different
from zero reveal a fault within the system, and the particular combination of residual
values provides means for isolating the faulty component. Processing of the residuals to
perform fault detection and isolation is the main task of the decision stage. Decision
algorithms range from simple threshold testing on the instantaneous values or on the
moving average of the residuals, to more sophisticated statistical testing based on the
Generalized Likelihood Ratio test [Willsky76], or on the Sequential Probability Ratio test
[Basseville88]. To achieve fault tolerance an additional recovery stage needs to be added.
This stage consists of an adaptive or multi-model control law that processes information
provided by the decision making stage to produce a suitable control law. All of the three
stages play an equally important role toward the successful fault tolerant control system;
however, most of the research focuses on the residual generation problem.

The first analytical redundancy scheme implemented within a flight control
systems dates back to the 70's, when the same aircraft used to conduct research on fly-by-
wire technology was also used as testbed for an analytical redundancy management
algorithm [Szalai80]. The algorithm showed desirable performance during flight test;
however, poor robustness to modeling errors and the degree of modeling necessary
retrained further development. Since then, a number of results have been obtained in the
area of robust fault diagnosis [Patton94].

3.1.3 - Certification of Analytical Redundancy based Fault Tolerant Flight Control
Systems

While research on analytical redundancy has been obtaining desirable results, a
design methodology involving requirements specification, feasibility analysis, and
certification of analytical redundancy based fault tolerant flight control systems is still
missing.

A major problem with the analytical redundancy approach is related to the
certification process. Since analytical redundancy based systems exploit the functional
redundancy of the plant, when applied in the field of flight control systems they need to
be validated over the entire aircraft operational envelope. Instead, most of these solutions
are evaluated using a simplified model of the aircraft dynamics, within a limited region of
the flight envelope, and with a limited set of maneuvers and fault-modes. Furthermore,
evaluation criteria are quite heuristic. A tentative list of criteria for assessing the
performance of fault detection and identification systems can be found in [Patton89], and
is summarized below:

e promptness of detection,
e sensitivity to incipient failure,

o false alarm rate,
e missed fault detection,
e incorrect fault identification.

A iypicai testing procedure for fault detection and identification systems involves
injection of a set of failures within a simulation environment and computation of the
above indexes. While obtained values can be effectively used to compare the
performance of two different solutions, they have no absolute interpretation. The testing
environment has a considerable impact on the evaluation of these indexes. Missed
detection and false alarm rate do not provide any valuable information if they are not
determined within the entire operational envelope of the system. These figures are highly
dependent on the disturbances acting on the system, on the type of fault injected, and --
for non linear systems -- on the state of the system. Furthermore, the fault could be not
detectable at all, thus leading to a missed rate of 100%. But this value is not an index of
poor performance of the fault detection system; rather, it indicates a lack of functional
redundancy within the system.

Exploring strengths, weaknesses, related degree of reduction of physical
redundancy, and overall reliability is a fundamental step in the engineering of analytical
redundancy based fault tolerant flight control systems. In order to provide an objective
basis for the evaluation of such systems it is mandatory to develop the requirements
specification. Validation of a system can be performed only against its specification.

S.1.4 - Research Objectives

The main objective of this part of the research was to investigate the possibility of
capturing within a formal framework the constraints that the Analytical Redundancy
approach imposes upon the system providing Fault Tolerance Capability (FTC). The
focus was on the methodology underlying the development of formal specification for an
Analytical Redundancy based FTC, as well as on the characteristics of the formal
specification language.

5.2. — Definition of the Approach

S.2.1 - Formal specification of systein réquirements

The requirements specification involves a considerable amount of engineering
analysis and judgement, it is the result of a long sequence of refinements, it is produced
with the collaboration of personnel in different area of expertise, and typically results in a
voluminous document with a complex set of dependencies. These factors make it difficult
to produce a consistent and unambiguous requirements specification. Despite the
considerable expressive power of plain-English, its use as specification language
introduces an additional source of ambiguity and inconsistency. Considerable leverage
can be obtained by adopting a formal specification language. A formal language is a
language with a mathematically defined syntax and semantics. The mathematical
definition of the language potentially eliminates the ambiguity problem, allows for
checking the consistency of the specification, and leads to a specification amenable to
automated analysis. Furthermore, the rigid structure of the formal specification serves as
a guide in formulating the requirements resulting in a homogeneous document throughout
the refinement iterations.

The specification framework adopted in this effort is based on Relational Algebra.
While developing our specification framework we aimed at providing support for
features that are important in the formulation of the AR-FTFCS requirements. These
features are the capability of formulating requirements in both explicit and implicit form,
the capability of formulating both functional and operational requirements, and the
capability of specifying a refinement ordering among specifications. We have chosen to
specify the requirements in terms of relations. This is not a choice of specification
language as much as it is a choice of reasoning framework, and a choice of semantic
model. The focus is on the methodology underlying the development of the formal
specification rather than on the analysis of the specification and its use within the
certification phase.

3:2.2 - Specification Approach
The following premises have been adopted as a basis for the development of the
specification:
- the need to adopt a specification paradigm that is suitable for process-control systems
- the need to produce a formal specification semantically and structurally close to the
natural language specification
- the need to specify both functional and operational requirements
- the need to organize the requirements in a hierarchical structure where introduction of
design constraints results in the refinement of a higher level (approach independent)
specification
To satisfy the first premise we adopt a history-based specification, where each
requirement is specified by the set of acceptable histories of the relevant quantities.
Furthermore, we adopt a closed-system approach [Feather-ACM87] where the entire
environment is described in the specification; as opposed to the open-system approach
where only the interface between system and environment is described. The history-based

paradigm combined with the closed-system approach is particularly suitable for the
specification of the requirements of process control systems.

With the second premise in mind the objective is to bridge the gap between the
original informal specification and the resulting formal specification.: It is important that
the semantic distance [Leveson94] between the two specifications is minimized in order
to maximize the application expert's ability to review the specification. Since this is not
always possible, unless the original specification is already well structured and
formulated, we go one step further and produce a reviewed natural language
specification. We take advantage of the feedback that naturally arises from the
formalization process to enhance/refine the original requirements. Then, instead of just
developing a formal specification that overcomes the flaws of the original requirement,
we produce both a formal specification and a reviewed natural language (informal)
specification. This informal specification is semantically closer to the formal counterpart,
so it plays a valuable role in augmenting the specification communicability.

The third premise is related to an important feature of the original specification:
the distinction between FCS functional requirements and FCS operational state. In the
context of process-control systems the scope of functional requirements is wider than
mere input/output behavior. It typically includes such aspects as timing and performance,
because they are indistinguishable from the input/output behavior. The system
operational state refers to the operating status of the components performing the system
function. For example, a multiple channel failure does not necessarily compromise the
FCS functions if the remaining channel/channels work correctly; however, it does modify
the operational state of the FCS with obvious consequences on system safety and mission
reliability. The classification of FCS operational states (Section 1.2.2 [MIL-F-9490D]) is
adopted in the original specification to formulate requirements related to fault tolerance,
aircraft safety, and mission reliability. We refer to these requirements as operational
requirements.

The FCS functional requirements are formulated in terms of constraints over the
time evolution of the environment state for a given system input. The system input/output
behavior is implicitly specified by specifying the behavior of the closed loop system
(system + environment), the description of the environment, and the interaction between
the system and the environment. We use relations to formulate the system functional
requirements. The relation signature specifies the domain and image variables in terms of
which the requirement is specified in the relation predicate. To be able to formulate
typical process control requirements the entire time-history of domain and image
variables must be visible within the scope of the relational predicate. For this reason, we
adopt variables that represent the time-history of the corresponding quantity, as opposed
to the quantity's instantaneous value. This is a common approach in specifying
requirements of process-control systems and has been adopted in the past within a formal
framework [Parnas95]. The history-based paradigm combined with the closed-system
approach is particularly suitable for the specification of the requirements of process
control systems. The functional requirements for this type of reactive systems are
typically formulated in terms of constraints over the time evolution of the environment
state for a given system input. An example of such requirements is the maximum allowed
RMS-error in a tracking problem. In such control problem the reactive system is required
to perform an action (system output) upon the environment so that the environment state

. (or one of its elements) tracks a reference signal (system input). The RMS-error is the
square root of the integral of the square deviation between reference signal and
environment state. This requirement is clearly expressed in terms of time-histories of
systein: input and environment state. For illustrative purposes, in Appendix A we report

“the relation that specifies the Heading Hold (HH) control function requirement, along =

with related tables and some observations upon the interpretation of the original
requirement.

As for the operational requirements we focus on those related to fault tolerance.
These requirements are formulated in terms of the functions that the system must be able
to provide under different operational states. We formulate the FCS functions by means
of relations, as described above. We model the system operational state as a sequence of
component's behaviors, each of them being formulated by means of a relation ‘B’. For a
particular operational state ‘h’, the actual behavior of each system component is
represented by a relation ‘O(h)’ that refines the corresponding behavior ‘B’. The fault
tolerance requirements are formulated as a composition of functional requirements and
actual system behavior under the relevant system operational states. For illustrative
purposes, in Appendix B we report the relations that specify nominal operating mode and
fault modes of the roll rate gyro.

Our last premise relates to the organization of the requirements in a hierarchical
structure. We satisfy this premise by exploiting composition operators and refinement
ordering of relational algebra. We first produce an approach independent specification of
the fault tolerance requirements, then we introduce the design constraints resulting from

. adopting the AR approach. We believe that such an approach not only increases
readability of the specification but also its reusability since the higher level specification
can be used for different design approaches. It is worth noting that the lower level
specification is targeted to control system engineers; only once control system engineers
have produced the laws that they claim to meet the specification is it possible to go one
level lower in the hierarchy and produce the specification of the software that will
implement these laws.

3:2.3 - Scope of Fault Tolerance Requirements
In the USAF specification for Flight Control Systems (FCSs) [MIL-F-9490D]
fault tolerance is addressed in different sections, each section focusing on one particular
aspect of fault tolerance. Section 3.1.6 addresses the implications of FCS failure upon the
mission and defines mission accomplishment reliability as “the probability of mission
failure per flight due to relevant material failures in the flight control system”. Section
3.1.7 addresses the implications of FCS failure on aircraft safety and defines flight safety
as “the probability of aircraft loss per flight due to relevant material failures in the flight
control system”. Section 3.1.8 defines survivability as the capability to of the FCS to
provide Operational States IV or V in extreme operating conditions. Section 3.1.9 defines
invulnerability as the FCS capability to operate under “variations in natural
environments, induced environments, failure of other systems, etc.” We do not directly
address the aspects listed above, though they are related to fault tolerance. Instead, we
' focus on the specification of redundancy (see section 3.1.3.1 of [MIL-F-9490D]) and on
the different degrees of fault tolerance that should be achieved by exploiting redundancy,

namely fail operational, fail passive, and fail safe capabilities, as described in section 6.6
of [AFFDL-TR-74-116supl]

5.2.4 - Specification Language: Reiational Algebra

Relational algebra is the mathematical framework that allows operating and
reasoning with requirements formulated in terms of predicate logic formulae. In the
following a brief introduction to Relational Algebra is presented, the interested reader is
referred to [Schmidt91].

Given two spaces (or sets) A and B, a relation R over AxB is a subset of AxB and
is specified as follows:

R={(A,B)|F(A,B) } G.1

The above expression reads: relation R is the set of couples of elements (A,B) eAxB
such that F(A,B) evaluates true. The data-structure (A,B) is the signature of the relation.
F is a predicate logic formula and is specified according to syntax and semantics of first
order predicate logic [Alagar98]. If (A,B) is an element of relation R, then A is called an
antecedent of R and B an image of R. The set of all antecedents of R is the domain of
relation R and is denoted dom(R). The set of all images of R is the range of relation R
and is denoted rng(R). The universal (or total) relation over the set A is defined by AxA
and is denoted La. The identity relation over the set A is defined by {(A,A") |a=a'} and
is denoted by I,.

Since relations are sets, they inherit all set operators and the inclusion ordering.
Furthermore, new operators are introduced for relations such as the inverse of a relation,
the product of two relations, the pre- and post-restriction upon relations, etc. The reader
is referred to [Schmidt91]. In terms of requirements specification the expression

R = {(A,B) | F(A,B) } (5.2)

is interpreted as follows: objects adopted in formulating the requirement are represented
by domain and image variables; A and B are structures whose elements are the domain
and image variables respectively; F(A,B) is a predicate logic formula that specifies the
requirement in terms of domain and image variables, ad hoc introduced quantified
variables, functions of such variables and constant values.

Relational algebra provides the formal framework for reasoning with predicate
logic specifications. This framework is based on composition operators and a refinement
ordering among requirement specifications. Composition operators allow specification by
parts. This specification method consists in breaking the required behavior of the system
into parts. Each part is specified by means of a relation. Then, these relations are
composed together to form the whole requirements specification. The refinement
ordering captures the idea of relative strength between two requirements. Also, it allows
defining the correctness of a system implementation with respect to its requirements.
Relation R is said to refine (or be a refinement of) relation R' (denoted by RPR') if and
only if

RLcRL A RLNARgR (5.3)

RPR' implies
e dom(R) 2 dom(R") ; :

that is the requirement specified by R extends over a larger (or equal) number of input

scenarios, and
e Va:aedom(R')(R(a)cR'(a),

that is relation R is more specific in its assignment of outputs to inputs.

The defined ordering among specifications reflects the strength of the related
requirements. Relation R refines relation R' if it defines a stronger (harder to satisfy)
requirement. If RPR', then any system that satisfies R satisfies R' as well. The refinement
ordering is also used to define correctness of an implementation. A system
implementation P is said to be correct with respect to its specification R if and only if
PPR.

The product of relation R; ¢ AxK by relation R, ¢ KxB is the relation over AxB
denoted by RiITR; (or RjR>) and defined by:

RiIIR; = {(A,B) |3k ((ak) € RiA (k,b) € Rz)} (54)

The sum of the requirement information of two relations R; ¢ AxB by relation R; ¢

AxBis called the join of R; and R; and is denoted by R;3R;. The following implication
holds:

RP (Ri9R;) < RPR,; A RPR; (5.5)

The join exists if and only if R, and R, do not contradict each other. A consistency
condition is available to check whether the join of R; and R, exists. The common
requirement information of two relations R; ¢ AxB and R, c A is called the meet of R,
and R; and is denoted by R;MR;. The meet of two relations is defined as follows:

RiMR; = RILAR;L N (RjURy) (5.6)
The following implication holds:

R=RMR, = R,PR; AR,PR
(5.7)

3.2.5 - Pilot Application

To develop the requirements specification of an Analytical Redundancy based
Fault Tolerance Capability (FTC) system all relevant details of its environment must be
specified. Hence, a pilot application is needed, an aircraft equipped with a FCS that can
be adopted as environment for the FTC. The aircraft selected is the De Havilland DHC-2,
also known as Beaver. This is a general aviation, single engine, high-wing aircraft with a
wing span of about 15 meters, fuselage length of about 9 meters, and a maximum take-off

weight of about 2300 Kg. Its analytical model and its FCS are provided in the Flight
Dynamics and Control (FDC) Toolbox for Matlab. Information in [Rauw93], [Rauw98],
and [Tjee88] was adopted to provide a description of the components of the FTC

cnvironment. The cited documentation provides the analytical model of the DHC-2 - .

~ aircraft, of the actuator-control-surface chain, the engine, and the continuous-time flight
control laws. This information covers the description of the aircraft subsystem, the
actuators block, and the FCL block. The description of the environment was completed
by developing suitable analytical models for the remaining blocks.

Aerodynamic derivatives and moments of inertia from [Rauw98] were adopted
for the analytical model of the aircraft; uncertainty bands about nominal values were
introduced according to [Hoak68]. Actuator-control-surface models include elevators,
ailerons, and rudder dynamics; the analytical model of the flaps is not included since the
flaps are not used by the autopilot functions. The cited documentation does not contain
any sensor model; hence, analytical models were developed from the technical
specification of commercial sensors.

5.3. - Results

5.3.1 - Requirements Hierarchy
The block diagram in Figure 5.1 represents the hierarchy of the requirements for
the Analytical Redundancy based Fault Tolerance Capability (AR-FTC).

Provide suitable Guarantee
GOALS autopilot functions

FUNCTIONAL Performance Warning
REQUIREMENTS requirements requirements

\\‘ Fault tolerance | OPERATIONAL

requirements | REQUIREMENTS

Environment
operating conditions

DESIGN Modularity wrt Analytical redundancy
CONSTRAINTS sensors/actuators approach

AR-FTC
REQUIREMENT

LT e Ry T o

ENVIRONMENT) -
DESCRIPTION FCS architecture | | FCS components DHC-2 dynamics

Figure 5.1 - Specification Structure

The topmost layer describes the goals of the system that are suitable autopilot functions
and safety of operation. The functions and the related performance requirements under
the relevant operating conditions are captured by the second layer of the requirements
hierarchy: Functional requirements and Operational requirements. The Design
Constraints layer introduces constraints requiring the adoption of the Amnalytical
Redundancy approach and modularity, with respect to sensor and actuator subsystems.
The very last layer describes the environment of the AR-FTC. The composition of the
different requirements, constraints, and descriptions makes up the requirements for the
AR-FTC system. In the following section each layer of the hierarchy is briefly described.

J.3.1.1 - Functional and Operational Requirements

The military specification MIL-F-9490D [MIL-F-9490D] is adopted as main
source for fault tolerance, performance, and warning requirements for AFCS. MIL-F-
9490D "Flight Control Systems - Design, Installation and Test of Piloted Aircraft,
General Specification for" is the active specification for FCS for US Air Force manned
piloted aircraft. It is supported by other military specifications, standards, handbooks, and
non-military publications such as FAA Advisory Circulars, National Aircraft Standards,

Technical Reports, etc. The most relevant supporting documents with respect to this

research are:

e the military specification MIL-F-8785C "Flying Qualities of Piloted Airplanes”
[MIL-F-8785C], : '

o the supplement "Appendix to Background Information and User Guide for MIL-F-
9490D" [AFFDL-TR-74-116supl],

e the Technical Report “Background Information and User guide for MIL-F-9490D"
[AFFDL-TR-74-116] and

e the Technical Report "Background Information and User guide for MIL-F-8785C"
[AFWAL-TR-81-3109].

For the purpose of developing the requirements specification for the FTC system
a narrow subset of requirements has been selected. The performance requirements for the
following autopilot functions are considered: Pitch Attitude Hold (PAH), Altitude Hold,
(ALH), Roll Attitude Hold (RAH), Heading Hold (HH), and Heading Select (HS).
Coordination requirements for lateral-directional control functions, both in steady banked
turns and in level flight are considered. Among the functional requirements the focus is
on fault-tolerance requirement, limited to those relevant to fail-operational functions.
Waming and Status Display requirements are also considered. Failure transient
requirements are not considered since the focus is on fail-operational capability only.

3.3.1.2 - Design Constraints

Two design constraints are introduced in the specification: adoption of the
analytical redundancy approach and modularity with respect to sensor and actuator
subsystems. The redundancy approach constraint rules out the multi-string architecture
for the FCS. Hence, this constraint affects the environment of the AR-FTC system, that is
the AFCS within which the AR-FTC operates. The AFCS in described in the next section
and is based on a single-string architecture. Use of analytical redundancy implies that
detection of the fault and identification of the faulty component are performed by
processing sensor outputs and actuator inputs. Fault recovery must be achieved by
reconfiguration of the estimator filter and/or of the control law of the AFCS.

Analytical redundancy based fault tolerance is achieved at the sofiware level;
software routines process control law inputs and outputs to check their consistency
against an analytical model of the controlled system (in this case the aircraft). Analytical
redundancy, however, cannot be used to provide fault tolerance with respect to failure of
all the FCS components. Any component of the FCS, either hardware or software, can
fail. Analytical redundancy cannot help with software failures; nor it can help if in a
single-channel FCS the FCC fails, since the FCC hosts the software that provides fault
tolerance. Failure of either the control or the display panel cannot be accommodated at
the software level; hence, analytical redundancy is -- under these conditions -- useless.

The remaining components of the FCS are the actuators and the sensors.
Analytical redundancy based solutions presented in the literature typically separate the
problems of actuator and sensor failure. The rationale behind this choice is simple: fault
tolerance with respect to sensor failures is mostly an observation problem, while fault
tolerance with respect to actuator failures is mostly a control problem; different expertise

and techniques are required for designing the two different FTC systems. For these
reasons a modular constraint upon the AR-FTC is imposed in the specification.

3.3.1.3 - Environment Description '

The environment of the FTC is the AFCS along with the whole DHC-2 aircraft
dynamics. Figure 5.2 shows how the FTC system fits within its environment. Each
component of the diagram is specified by means of a relation. A brief conceptual
description of the picture is provided in the remaining part of this section. The detailed
description of the relations represented in the block diagram is out of the scope of this
report; the interested reader is referred to [DelGobbo00].

The arrows in the diagram represent data streams like forces and moments,
electrical signals, software data, etc; the blocks represent processing units. Square-corner
blocks represent hardware units, while round-corner blocks represent software units.
Blocks are grouped by means of dash-lines to form subsystems or systems.

The DHC-2 aircraft system (the topmost subsystem in Figure 2) represents the
aggregate of airframe, control surfaces, and engines. The control surfaces are typically
included in the airframe; here they are separated since different fault hypotheses are
introduced for the two units. The airframe block also includes the contribution of
gravitational field and air turbulence to the aircraft dynamics. Each block represents a
relation that formally specifies part of the description of the system. The aircraft
dynamics is specified through force (Rpeg), moment (Rmeq), kinematic (Rieq), and
navigation (Rwneq) equations. The forcing terms for these equations are aerodynamics
forces (Rqer) and moments (Rqem) exerted by the airframe, forces (Resf) and moments
(Resm) exerted by the control surfaces, forces (Rpf) and moments (Rpm) exerted by the
engine, and gravity (Rgy¢) and wind (Ryy) forces. This section also includes the relations
that specify air-data quantities (Ryq) and kinematic acceleration at crew station (Ry,).

The group of blocks marked FTFCS represents the Fault Tolerant Flight Control
System. It is composed of the flight control computer (FCC), the subsystem processing
computer-output (Cout), and the subsystem generating computer-input (Cin). The FCC is
composed of the Flight Control Software (FCSw) and of the DAC and ADC blocks. The
last two blocks represent the transformation from electrical signals to software data and
viceversa.

The FCSw is composed of three units: IN, OUT and FCL (Flight Control Law).
IN and OUT serve as pre-processing and post-processing units to the flight control law,
while FCL is the block that processes software representation of pilot inputs and sensor

outputs to produce a software representation of the input to the actuators, the engines, and
the display panel.

‘Uw + Upm + Xs I ' l

Figure 5.2 - AR-FTC within its environment.

R T T 5 .

R:::w Cy SpU+U,+X §:X S,

: Retpcs T S U+ U, +X SgU,+X Sy
S, fJ, +X Se: ﬁc S

The Cin and Cout subsystems contain blocks whose names are self-explanatory.
ACT denotes the actuators, DP and CP denote the display panel and the control panel
respectively, and Sp and Ss denote the primary and secondary sensors respectively. The
primary sensors are those that produce measurements used within the FCL.
Measurements from secondary sensors, ‘instead; are used for other purposes, eventually
from another control law not shown in the diagram.

The FTC system is composed of the blocks marked with a thicker outline. CPgrc
and DPgrc represent the control and display panel of the FTC. They represent the
interface with the pilot, and provide means to activate/deactivate the FTC and to signal
the operating status (nominal/faulty) of the monitored sensors. ADCgrc and DACrrc
represent the interface between the electrical signals from the FTC control and display
panels and the related software variables. FTC;, and OUT,, represent the software
modules that serve as interface between the ADCrrc and DACgrc blocks, and the FTC-
AR block. FTC-AR is the core of the FTC; it represents the software routines that process
sensor readings (from the IN block) and control inputs (from the OUT block) to check
whether the correlation among them is consistent with the analytical model of the

environment. This is the system that exploits analytical redundancy to provide fault
tolerance.

5.3.2 - Analysis of the Fault Tolerance Requirements

In this section we illustrate the original formulation of the fault tolerance
requirements in [MIL-F-9490D] our interpretation of the specification, and the resulting
structure of the formal specification. The military specification defines three different
degrees of fault tolerance that correspond to different degrees of criticality of the FCS
function. These degrees are defined as follows:

- Fail operational “The capability of the FCS for continued operation without
degradation following a single failure, and to fail passive in the event of a related
subsequent failure.”

- Fail passive “The capability of the FCS to automatically disconnect and to revert to a
passive state following a failure.”

- Fail safe “The capability of the FCS in a single channel mode of operation to revert
to a safe state following an automatic disconnect in the event of a failure or pilot
initiated disconnect.”

We limit our study to autopilot control functions such as Pitch Attitude Hold,
Altitude Hold, Heading Hold, etc. These are declared as non-critical functions since their
loss does not affect flight safety, and, as such, they are required to be fail safe. For the
purpose of this study we extend the autopilot fault tolerance requirements to the fail
operational degree, and we neglect the details of the transition from automatic FCS to
manual FCS following automatic disengagement. Another requirement related to the
fault tolerance capability is the FCS warning and status display requirement (section
3.2.1.4.2.2 of [MIL-F-9490D]). The relevant part of this requirement reads:

“Failure warnings shall be displayed to allow the crew to assess the operable
status of redundant or monitored flight control systems. Automatic disengagement
of an AFCS mode shall be indicated by an appropriate warning display.”

The definitions of fail operational and fail passive capability, the requirement that the
autopilot control functions be fail operational, along with the above warning and status
display requirement make up the original formulation of the fault tolerance requirements.
The detailed analysis and specification of the FT-FCS requirements is beyond the scope
of this study. We limit ourselves to point out three major flaws in the original definition
of the fail operational capability, since the structure of the formal specification stems
from this definition.

The first problem is one of coverage. From our interpretation the specification
aims -- though it fails -- to distinguish between two operating conditions of the system:
the condition with unrelated components being faulty, and the condition with two or more
related components being faulty. The fact that the occurrence of the two faults might be
sequential is incidental, the requirement of continued operation without degradation must
be satisfied also in the case of simultaneous faults. Hence, the wording in the event of a
subsequent failure is not appropriate. Furthermore, the specification fails to cover the
case of unrelated faults.

The second problem is one of terminology. The specification uses the term related
Jailure but it fails to define how to determine whether two failures are related. Nor is this
concept defined anywhere else in the MIL-F-9490D document. We infer from the
specification that the occurrence of related faults is more critical than the occurrence of
unrelated faults. In fact, for related faults the FT-FCS is required to be fail passive
(disengage), while for unrelated faults (according to the interpretation above) it is
required to continue operation. We arbitrarily adopt a functional equivalence among the
set of components, so that faults of components that belong to the same class are
considered related. The rationale behind this interpretation is that failure of components
serving similar functions (e.g. sensors, actuators, etc.) are potentially more critical than
failures of components serving different functions. Hence, this interpretation is in
agreement with the association between faults relatedness and faults criticality.

The third problem is one of scope. The specification fails to specify the set of
components whose failures are considered. Is it the set of components of the FT-FCS? If
this is the case, then failure of engines and control surfaces is not covered since they do
not belong, by definition (section 1.1 of [MIL-F-9490D]), to this set. We include in the
set of components whose failure is taken into account in the fault tolerance requirement,
all fallible components that play a role in performing the autopilot control functions.

5.3.3 - Structure of the Formal Specification
As a result of the above analysis and of the requirements hierarchy five main parts
can be distinguished in the structure of the specification:
o specification of the decomposition of the system to specify the scope of the
requirements and the set of related components

e specification of the operational behavior of the system to support the specification of
the fault tolerance requirements

e specification of performance and warning requirements that must be
preserved/provided under faulty operating conditions
specification of the operational requirements
introduction of the design constraints into the operational requirements

3.3.3.1 - Specification of System Composition

Decomposition of the system and sets of related components are specified as follows:
o definition of relevant sets of components:
- C: set of components of the system, C. being the component identified through
the subscript ‘c’
- F: set of components that are subject to failure
- U: set of components used by the FT-FCS (i.e. playing a role in performing the
autopilot control functions)
e partitioning of the set of fallible components F into subsets of functionally related
components:
- A subset of actuation components (power control units, control surfaces, engines)
- M subset of measurement components (sensors)
- P subset of processing components (software components)
- Isubset of interface components (elements of the control panel)
- related(C,, Cy) predicate that evaluates true if and only if C; and C are related

The operational behavior of the system results from the operational behavior of its
components. Relations are adopted to describe the nominal and faulty behaviors of the
system components. Each relation describes the maximal set of histories over time that
characterizes the component nominal operation or one of its fault modes. B, denotes the
relation describing the n-th behavior of component C.. For n=0, B, describes the
component's nominal behavior, while for 0 < n < f; it describes one of the component's
fault modes; f; being the number of fault modes. An ordered sequence of the above
relations represents the system operational status. For example, the fault free operating
condition is represented by the following sequence of relations:

h0,0 = [Bp,O, Bq,O, BI',O’ e] (5.8)

where p, q, r identify some of the system components, in the example roll, pitch, and yaw
rate gyros. Such sequence is an element of the space X:

Z=(Xp > Yp) x (Xq = Yo) x (Xe = Yo x ... (5.9)

where (X., Y.) denotes the signature of the relations B.,. Under the system operating
condition h € Z the operational behavior of component C. is represented by a relation O,
(h) that refines the corresponding relation in the sequence. For example, the sequence hop
described above implies that the roll rate gyro is operating as described by the relation
Op(hog) P Byo.

Once all the individual components of the environment are specified the corresponding
relations are composed to form the specification of subsystems and systems. To carry out
the composition the join operator is used for simultaneous requirements and the product
operator for sequential requiremeris. ‘In order to satisfy the signature compatibility
requirements of these operators projection and expansion relations are applied where
needed. For the sake of readability these space-altering relations are not specified in the
following example of composition. For compositions that do not follow in either of the
two categories the direct composition of the relations is obtained by accessing the single
elements of the relations’ signatures.

The highest level of the composition consists of the composition of the DHC-2
aircraft specification and of the FTFCS specification. The relational formulation of such
composition is illustrated below, while Figure (1) depicts a graphical representation of
the composition. The figure highlights the signature of the operand relations as well as

the signature of their composition. The parameter h represents the system operating
condition.

Obuca(h) ® Ortres(h) = {(Uw, Upm, Upa, Up), X) | 3 Ul (5.10)
((Upa, Ug, X), Ue) € Orrresth) A (Ue, Uw, Upm), X) €Oprca(h))}

~ DHC-2

wy -,
@Aﬂ/@

R ER

_J

—U,, +U,, +U

Figure 5.3 - Structure of aircraft dynamics specification.

The second level of the composition consists of the composition of the two separate
specifications related to the DCH-2 aircraft and to the FTFCS respectively. For
illustrative purposes the relational specification of the DHC-2 aircraft is reported below;
it clearly maps the structure of the aircraft dynamics in Figure 2:

O(h) = Oaer(h)3O0gri(h) 3Ocs(h) 30 ,i(h) 3Owi(h) (5.11)
Om(h) = Oaem(h)$Ocsim(h) SOpm(h)
Opnca(h) = O(h)TO0peq(h) 30 m(h)[TOwMeq(h)SOxeq(h)SOneq(h)S $04d(h)IOka(h)

3.3.3.2 - Specification of System Operating Conditions

The system operational conditions are grouped into three classes, on the basis of
the different action required to the FTC system in the fault tolerance requirements. Each

class captures a fault hypothesis upon the system. The three hypotheses are named fault-
JSree hypothesis Hy, the single-fault hypothesis Hi, and the multiple-fault hypothesis H,.

A major assumption underlies each fault hypothesis that is: “All fallible components
operate either according to their nominal behavior or according to -one of their fault
modes”. The assumption states that manufacturer specification of nominal and faulty
behaviors of each component form the basis of the fault tolerance requirements (and of
the resulting certification process), regardless of the fact that those specifications actually
cover all possible behaviors of the components. This assumption is formalized as follows:

H={heZ|Vc:C,ceF@mM:0sm<f (O, (h)PB.n)) } (5.12)

The Fault-free hypothesis reads: “All of the components used by the FT-FCS are working
according to their nominal behavior”, and is formalized as follows:

Ho = H'n{heX|Vc:CceU((h)PBc) } (5.13)

The Single-fault hypothesis reads: “At least one component among those used by the FT-
FCS is working according to one of its fault modes, and there are no related faults”, and
is formalized as follows:

H =Hn{heX|3¢c:CceU@m:0<m<f (O (h)PB;m)A (5.14)
Vk:Cke UAk#cA related(C., Ci) (Oc (h) PBcy)) }

The Multiple-fault hypothesis reads: “At least two related components among those used
by the FT-FCS are working according to one of the corresponding fault modes”, and is
formalized as follows:

H; =H'Nn{heZ|3c3IkInIm:C;. e UAC € U A related(C,, Ci) A (5.15)

The wunderlying fault hypothesis assumption states that manufacturer
specifications of nominal and faulty behaviors of each component form the basis of the
fault tolerance requirements (and of the resulting certification process), regardless of the
fact that those specifications actually cover all possible behaviors of the components. To
describe the fault hypotheses we refer to Table 5.1. Each column of the table represents a
fallible component of the system; grouped columns represent related components. For the
sake of space the table contains only the section related to the components used by the
FT-FCS. Each row of the table represents a system operating condition; grouped rows
correspond to the same fault hypothesis. The entries of the table represent the behavior of
a component under a specified operating condition of the system. A zero entry indicates a
nominal behavior, while a non-zero entry indicates a faulty behavior. For example, the
operational behaviors of the roll rate gyro C, under the system operating conditions ho,
hl,O, and h; o are Op(ho'o) P Bp,o, Op(hl,o) P Bp'l, and Op(hz,o) P Bp,z respectively (see
Section 5.4.2).

By referring to this table, the fault-free hypothesis is described by a row with all
zero entries. The single-fault hypothesis is described by any row that has at least one non-

zero entry and does not have multiple non-zero entries in any section of related
components. The multiple-fault hypothesis is described by any row that has at least two
non-zero entries in one section of related components. We will refer to this table again

when we will discuss the refinement of the fault hypotheses resulting from the- - - =.
introduction of the design constraints. ‘

FNnU
M A P |
Cp Cq C . |Cii Cav Crud - Cn Cour . pr Cwq
Ho {hoo| O 0 o .10 0 0 0 0 0 0
ho|1 0 0 0 0 0 0 0 0 0
H [y 2 0 0 0 1 0 0 0 3 0
hy 0 0 O 0 0 1 0 3 0 0
hyo| 1 1 0 0 0 0 0 0
Hy [hp; | 2 0 0 1 0 3 1
hp{ 0 0 O 3 2 1 1 3 0 0

Table 5.1 - System Operating Conditions

5.3.3.3 - Specification of Functional Requirements

Performance and warning and status display requirements from [MIL-F-9490D]
are also specified in terms of relations. Each requirement is formulated in terms of
maximal set of admissible aircraft state histories corresponding to specified pilot inputs.
Requirements for each control functions are captured by a different relation: the relation
Rpan specifies the requirements for the Pitch Attitude Hold control function, the relation
Rawu specifies the requirements for the Altitude Hold control function, etc. A set Sy
specifies the constraints upon the operation of the control functions as set of admissible
histories of control inputs. The whole set of performance requirements is specified
through the relation Rp. This relation is obtained by joining the single relations as
described by the following equation:

Rp =Sa\ (Rpan® Rarud Rrand Rund Rus8 Rspr8 Rip)) (5.16)

For the details of the above requirement the reader is referred to [DelGobbo00] (for an
example see Section 5.4.1).

As for the warning and status display requirements, they cannot be made explicit
without specifying the redundancy approach. In fact, these requirements constitute a
mapping from the space of system operating conditions I to the space of waming and
disengagement signals. The redundancy approach makes this requirement operational in
the sense that the elements of the space ¥ are mapped into a relation over system

quantities. These quantities along with warning and disengagement signals make up the
signature of the warning and status display requirements. For example, by adopting the
physical redundancy approach the outputs of the redundant elements constitute the
quantities processed by the FTC system. The operating status of the system is mapped
into a consistency relation among the redundant outputs. This relation is named RID(h)
and the generic quantities carrying redundant information Q. The warning and status
display requirements are then formalized as:

Rw = {(Q(W,Yy) | (5:17)
Jh:h e HyA QeRID(h) (W=OFF A Yq4=0FF) O
dh:h e Hy A Q eRID(h) (W = warning(h) A Yq=OFF) O
dh:h e Hy A Q eRID(h) (W = warning(h) A Yq=ON) }

the term RID(h) and the quantity Q will be made explicit in the AR-FTC specification.

3.3.3.4 - Operational Requirements

The fail operational requirement reads: “The DHC-2 aircraft equipped with the
FT-FCS shall meet the performance specification under all fault-free and single-fault
operating conditions of the system”, and is formalized as follows:

V h € Hyu H; : DHC(h) ® FTFCS(h) P Rp (5.18)

The warning requirement reads: “Under fault-free operating conditions of the DHC-2
equipped with the FT-FCS the FT-FCS shall stay engaged and all warnings shall be off:
under single-fault operating conditions of the DHC-2 equipped with the FT-FCS, the FT-
FCS shall stay engaged and only warnings corresponding to faulty components shall be
‘on; under multiple-fault operating conditions of the DHC-2 equipped with the FT-FCS,
the FT-FCS shall disengage and only warnings corresponding to faulty components shall
be on”, and is formalized as follows:

V h € Hyu H; U Hy: FTFCS(h) P Rw (5.19)

3.3.3.5 - Introduction of Design Constraints

The specification represented by Eqs (5.18) and (5.19) represent the high-level,
redundancy approach independent requirements for the FTC. By introducing the design
constraints a refined specification is obtained. The refinement process is driven by the
introduction of two design constraints. The first constraint requires the AR-FTC to make
provision for faults within the measurement and the actuation subsystems by exploiting
analytical redundancy. The assumption is made that the AR-FTC system is introduced in
a system that already provides fault tolerance with respect to faults within the Processing
and Interface subsystems implying that faults on components of these two subsystems are
transparent to the AR-FTC. This constraint leads to a refinement of the fault hypotheses
in order to eliminate system operating conditions containing faults on processing and

interface components. To formalize such constraint the following sets of system
operating conditions is introduced:

Hp={heX|Vc:CcePAU@O,(W)PBo) } - (5.20)
Hi={heX|Vc:CoeINnU@©:(h)PBeo) } (5.21)

Table 5.2 represents the two classes of sequences Hp and H;. The 'x' entries stand for ‘any
component behavior’. The intersection between the sequences in Table 5.2 and those in
Table 5.1 represent the set of system operating conditions relevant to the specification of
the AR-FTC requirements.

FNnU
M A P I
C C G . |GCGit Cav Cua - | Cn Cour - |Cwp Cwq
Hp X X X .| x X X . 0 0 I ¢ X
H; X X X .| X X X . X X .1 0 0

Table 5.2 - Refinement of Fault Hypotheses

The constraint over the redundancy approach leads to a second refinement of the FT-FCS
specification since it allows specifying the redundancy relation RID(h) and the quantity Q
within the warning requirement Ry. The quantities carrying redundant information and
providing redundant action upon the system state are the software variables representing
sensor outputs X and actuator inputs U.. These are the quantities processed by the AR-
FTC to identify the system operating condition and to provide required fault tolerance.
The couple (U, X) is checked against the consistency relations captured by RIDag(h):

RIDagr(h) = OUT(h) ® AS(h) ® DHC(h) ® MS(h) ® IN(h) (5.22)

By substituting RID(h) with RIDag(h) and Q with (U., X) in Equation 17, and by
projecting the output signals W and Y, onto the AR-FTC output W and Y4 the warning
requirement constrained by adopting the analytical redundancy approach is obtained:

Rwar = { (U, X), (W, Ya)) | (5.23)
Jh:heHyA (Ue, X) € RIDag (h) (W= OFF A Y4 = OFF) O
3h:heH A(UcX) € RIDr (h) (W = warning(h) A Y = OFF) O
Jh:heHy A (Us, X) € RIDag (h) (W= warning(h) A Ya=ON) }

The second constraint requires the AR-FTC system to be modular with respect to
Measurement and Actuation components. That is, two different FTC systems, denoted
FTCwm and FTC,, must provide fault tolerance each with respect to faults within one of
the two subsystems. This constraint leads to a splitting of the performance requirements
Rp into two separate requirements Rops and Racrt. Rops specifies the observation

capability that the FT-FCS should provide, while Ruct specifies the actuation capability
it should provide. Rops and Racr result from the decomposition of the FCS in Figure 5.2:

Rops = MS ®IN (5:24). P
Racr = FCL ® OUT ® AS ® DHC S

From the correctness of the FCS design it results:
Roes ® Racr P Rp (5.25)

The relations 64 and oy are used to project the requirements on the relevant set of
warning signals for components of the Actuation subsystem and the Measurement
subsystem respectively. The fail-operational requirements for the AR-FTC monitoring
the measurement (sensor) subsystem reads: “The FTCy shall process software variables
representing outputs from the Measurement subsystem and inputs to the Actuator
subsystem to produce a set of validated software measurement variables that allows
meeting the requirements for the observation subsystem Rogs. The above function shall be
performed under all fault-free and single-fault operating conditions of the DHC-2
equipped with the FT-FCS, and under the assumption of correct operation of Processing
and Interface components”, and is formalized as follows:

V h e (Ho U Hy) M Hp A Hi: MS(h) ® IN(h) ® FTCpm(h) P Ross (5.26)

The warning requirements for the AR-FTC monitoring the measurement (sensor)
subsystem reads: “Under fault-free operating conditions of the DHC-2 aircraft equipped
with the FT-FCS the FTCy shall not cause disengagement of the FT-FCS and all
warnings corresponding to faulty components of the measurement subsystem shall be off;
under single-fault operating conditions of the DHC-2 aircraft equipped with the FT-FCS,
the FTCy shall not cause disengagement of the FT-FCS and warnings corresponding to
faulty components of the measurement subsystem shall be on; under multiple-fault
operating conditions of the DHC-2 aircraft equipped with the FT-FCS, the FTCy shall
cause disengagement of the FT-FCS and warnings corresponding to faulty components
of the measurement subsystem shall be on”, and is formalized as follows:

Vhe (Ho U Hv Hz) NHpN H]Z FTCM(h) P RwarHO'M (527)

5.4 — Case Studies

3.4.1 — Case Study #1: Heading Hold (HH) System
This section reports the formal specification of the Heading Hold (HH) control

function requirement, along with related tables and some observations on the
formalization process. The HH requirement is fairly simple, yet provides a number of
meaningful points for discussion. The original formulation of the requirement from
[MIL-F-9490D] is reported below:

3.1.2.2 Heading Hold

"In smooth air, heading shall be maintained within a static accuracy of +/- 0.5
degree with respect to the reference. In turbulence, RMS deviations shall not
exceed 5 degrees in.heading at the intensities specified in 3.1.3.7. When heading
hold is engaged, the aircraft shall roll towards wings level. The reference heading
shall be that heading that exists when the aircraft passes through a roll attitude
that is wings level plus or minus a tolerance.”

The HH requirement specifies accuracy requirements for the heading angle for operation
in both smooth air and turbulence when the HH function is engaged. By analyzing the
requirement we identify the quantities that are used within the specification; hence, we
assign mathematical variable to each quantity. The mapping between the real quantities
referred to in the natural language specification and the entities used in the formal one
bridge the gap between the two specifications. This mapping is collected in tables where
each variable and predicate used in the relations is precisely — though informally —
defined to lead to a unique interpretation in the domain of flight control systems.
Furthermore, these tables collect valuable information such as data-type, admissible
value ranges, metric units. Tables 5.3 trough 5.6 list all mathematical entities used within
the HH relational specification, and separate them into constants, domain, image, and
quantified variables, and auxiliary functions. The signature and the predicate of the HH
relational specification are given by the following two equations:

HHsign = ((SWun0,uwt0;Vwt0;Wut0):(w 0,6 () (5:28)

HHopreq = V) Vi3 (0 <t <t3 <o A engaged (SWyn(), ti, t3) = (5.29)
L3y (tSth<ts AVE(St<t3 2 |0(t) < dacc) A Wr=y(t2) A
—turb(t), t3) > V(G St <t3 D W(t) - Wr| < Waee) A
turb(t;,t3) = RMS(y() - s, t2, t3) < Wrms))

Hence, the relational specification for the HH control function requirement is:
Run = { HHsign | HHpred } (5.30)

In this study we focused on the specification of the requirements within the
framework of relational algebra, rather than on developing a set of complete and feasible
requirements. Nevertheless, it is worth pointing out that we found a number of flaws
within the original formulation of the requirements. Whenever possible we modified the
requirements to correct them. An example from the HH control function requirement is in
the paragraph: "When heading hold is engaged the aircraft shall roll towards wings
level". This paragraph has been formalized by requiring the airplane to reach -- at a
certain time instant t; -- a state with a bank angle close to zero. To quantify how close, we
adopted the accuracy threshold ¢, used in the Roll Attitude Hold specification (Section
3.1.2.1 of [MIL-F-9490D]). This solution is our best guess to make up for the lack of a
threshold in the original requirement. Another problem that we found in the requirements
of the autopilot functions is the lack of any indication of the transient time between
autopilot engagement and the instant when the steady-state condition is reached. In the

case of the Heading Hold requirement the transient interval is [t;, tz]. The requirement
applies only if this interval is larger than the interval At that it will take the aircraft to
reach wing level attitude. At is function of the roll angle ¢(t;), the roll rate d¢/dt(t;), and
the roll rate capability of the aircraft in the current point of the flight envelope.

Determination of At was out of the scope of our study, so we limited ourselves to specify
the original requirement and report the problem.

ID and value Type Definition
Waee = 0.5 degrees Angle-T Heading accuracy in smooth air
Wrms = 5 degrees Angle-T RMS heading accuracy in turbulence
$acc= 1.0 degrees Angle-T Roll accuracy in smooth air
Table 5. 3 - Constants
ID Type Definition
SWin() Time-T — Switch-T HH autopilot on/off switch
Uwt(), Ver()s W) Time-T — Velocity-T | Turbulence components of wind velocity along

body- axes

Uyg(),Vug()s Wag()

Time-T — Velocity-T

gust components of wind velocity along body-
axes

v0 Time-T — Angle-T Heading angle
¢0 Time-T — Angle-T Bank angle

Table S. 4 - Domain and image variables
ID Definition

engaged (SW(), t,, t)

Predicate that holds true only if the switch SW() is engaged at t=1t,
and stays engaged throughout the time interval [t,, ty)

RMS(f(), o, to)

tp]

Root Mean Square value of the function f() over the time interval [t,,

turb(t,,t,)

Predicate that holds true if random and discrete turbulence wind
components are not zero in the time interval [t,, t,]

Table 5.5 - Predicates and functions

ID Type Definition

t Time-T Generic time instant

t Time-T HH function engagement instant . .

t Time-T Time instant when the reference heading is
determined

ts Time-T Time instant delimiting the scope of the
requirement

WYy Angle-T Reference heading

Table 5.6 - Quantified variables

S.4.2 — Case Study #2: Roll Rate Gyro Failure
In this section we report the specification of the roll rate gyro to illustrate some

details on the specification of the system component’s behaviors. We report the
specification of the steady state behavior of the sensor along with three fault modes. The
fault mode behaviors have been modeled by analyzing the sensor output after causing the
failure. Three different fault modes have been considered: loss of power connection, loss
of ground connection, loss of signal connection. Eq’s. 5.31 through 5.34 report the
corresponding relations. Each relation specifies the behavioral envelope of the sensor
under the corresponding operating condition. The mapping between system operating
conditions and the corresponding component behavioral envelopes is specified by Table
5.1. The table entry identified by the row marked hy and the column marked C, is ‘0’,
implying that the behavioral envelope of the roll rate gyro (identified by C;) under the
system operating condition hyp is Byo. Analogously, the behavioral envelope of the roll
rate gyro for the system operating condition h; is By, since the corresponding table
entry is ‘1’. The actual behavior of the sensor, while operating within the FCS, is
represented by the relation Op(h). If the system operating condition is hgg then the roil
rate actual behavior is an instance of the corresponding behavioral envelope B, ; that is,
Op(ho,) P Bpo.

Behavioral envelope 0 (nominal operation)
Bpo={(@p)|Vt3IS,Ibias, Iv,() (0St<woA (5.31)
Sz £Sp < S; A BIAS; <bias, < BIAS; A whiteNoise(vp(), Npsdg) =

B O~ (Sl + biasy + v,(]ont)

Behavioral envelope 1 (fault mode corresponding to loss of power connection)

Bpi={(,P)|Vt3v,0) (0=1t<oo A whiteNoise(vp(), Npsdg) = (5.32)
~ OR}

t) ~ [vy(t g

P (V) ~ [v()]0RE

Behavioral envelope 2 (fauit mode corresponding to loss of ground connection)

Bp2={ (D) |V t3 v, (0<t<oco A whiteNoise(vy(), Npsdg) = (5.33)

~ ORY}
; p (,t)~ Ve + w(0)]ORg

Behavioral envelope 3 (fault mode corresponding to loss of signal connection)
Bps={(@P)IVtIv0(0<St<oona whiteNoise(vy(), 0.25) = (5.34)

B O~ [v(t]og

5.5 - Conclusions

The formulas in the previous sections are an excerpt of the specification for the
Analytical Redundancy Based Fault Tolerance Capability for sensor failures in an
automatic flight control system. The development of the specification brought to light a
number of issues, some of which are still left unsolved in the literature.

Prior to adopting relational algebra an attempt was made to adopt SCR (Software
Cost Reduction) encouraged by the mature development environment and the rich set of
automatic tools that support the SCR specification language; results of this effort are
documented in [DelGobbo98], [DelGobbo99], [Cortellessa00], and [Alexander00]. A
number of issues prevented the SCR specification from ever reaching a mature status.
SCR transition-based paradigm and the intrinsic open-system approach of an SCR
specification were not suitable for formulating the requirements we considered. The lack
of structuring mechanisms made it difficult to build the system specification from the
specification of its parts. The weak support of time modeling and the rigid specification
model forced the elaboration of artificial solutions -- coding tricks — to formulate the
requirements, thus showing poor expressiveness of the language for our application. Most
of the above issues arise from the poor compatibility between SCR and this particular
application, rather than from weaknesses in SCR itself.

As opposed to SCR, relational algebra does not come with automatic tools; on the
other hand it provides:

- asuitable reasoning framework, within which it is possible to specify and reason
about the various aspects of the system requirements,

- capability to specify requirements that are not formulated as explicit description of
system inputs/outputs constraints,

- aflexible notation that allows representing the structure of the system,

- means to represent functional as well operational requirements.

References for Section #5

[AFFDL-TR-74-116] Background information and user guide for MIL-F-9490D.
Technical report AFFDL-TR-74-116, USAF, 1975.

[MIL-F-9490D] Flight control systems - design, installation and test of piloted aircraft,
general specification for. Military specification MIL-F-9490D, USAF, 1975.

[AFFDL-TR-74-116supl] Appendix to background information and user guide for
MIL-F-9490D. Technical report AFFDL-TR-74-116 sup1, USAF, 1980.

[MIL-F-8785C] Flying qualities for piloted airplanes. Technical Report MIL-F-8785C,
USAF, 1980.

[AFWAL-TR-81-3109] Background information and user guide for MIL-F-8785C.
Technical report AFWAL-TR-81-3109, USAF, 1982.

[Alagar98] Alagar V.S. and Periyasamy K., Specification of Software Systems,

Springer Verlag, 1998.

[Alexander00] Alexander C., Cortellessa V., Del Gobbo D., Mili A., and Napolitano M.,
“Modeling the Fauit Tolerant Capability of a Flight Control System: An Exercise in
SCR” Fifth NASA Langley Formal Methods Workshop, Williamsburg, Virginia, June
13-15, 2000.

[Basseville88] M. Basseville. Detecting changes in signals and systems - a survey.
Automatica, 24:309--326, 1988.

[Chen99] J.Chen and R.J. Patton. Robust Model-Based Fault Diagnosis for Dynamic
Systems. Kluwer Academic Publishers, 1999.

[Chow80] E.Y. Chow and A.S. Willsky. Issues in the development of a general algorithm
for reliable failure detection. Proc. of the 19th Conf. on Decision and Control, 1980.
[Cortellessa00] Cortellessa V., Cukic B., Mili A., Shereshevsky M., Sandhu H., Del
Gobbo D., and Napolitano M., “Certifying Adaptive Flight Control Software”,

ISACC, 2000.

[DelGobbo98] Del Gobbo D., Napolitano M., Callahan J., and Cukic B., "Experience in
Developing System Requirements Specification for a Sensor Failure Detection and
Identification Scheme", Proc. of the Third IEEE High Assurance System Engineering
Symposium, Washington D.C., Nov. 13-14, 1998.

[DelGobbo99] Del Gobbo D., Cukic B., Easterbrook S., and Napolitano M., "Fault
Detectability Analysis for Requirements Validation of Fault Tolerant Systems", Proc.
of the Fourth IEEE High Assurance System Engineering Symposium, Washington
D.C., Nov. 17-19, 1999.

[DelGobbo00] D. Del Gobbo Formal Specification of Requirements for Analytical
Redundancy based Fault Tolerant flight Control Systems. Ph.D. dissertation, West
Virginia University, MAE Dept. Dec. 2000

[Feather87] M.S. Feather Language support for the specification and development of
composite systems. ACM Transactions on Programming Languages and Systems. Vol.
9 No 2, April 1987, p.198-234

[Favre94] C.Favre, Fly-by-wire for commercial aircraft: The airbus experience.
International Journal of Control, 59:139--157, 1994.

[Hoak68] D.E. Hoak, D.E. Ellison, et al. USAF Stability and Control DATCOM.

Flight Control Division, Air Force Flight Dynamics Laboratory; Wright-Patterson Air
Force Base, Ohio., 1968.

[Leveson94] N.G.~Leveson, M.~Heimdahl, H.~Hildreth, and J.D.~Reese. Requirements
Specification for Process-Control Systems, IEEE Transactions on Software
Engineering, Vo0l.20, No.9, Sept. 1994; p.684-707.

[Rauw-98] Rauw M. FDC 1.2 - A Simulink toolbox for flight dynamics and vontrol
analysis - user manual. http://www.mathworks.com/, 1998. '

[Rauw-93] Rauw M.O. A Simulink environment for flight dynamics and control analysis
- application to the DHC-2 'beaver'. Graduate's thesis. Delft Univ. of Thechnology, the
Netherlands, 1993.

[Parnas95] D.L.~Parnas and J.~Madey. Functional Documentation for Computer
Systems, Science of Computer Programming, Vol.25, No.1 October 1995, p.41-61.

[Patton94] R.J. Patton. Robust model-based fault diagnosis: The state of the art.

IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes
- SAFEPROCESS '94, 1:1--24, 1994.

[Patton00] R.J. Patton, P.M. Frank, and R.N.Clark (Eds.). Issues of Fault Diagnosis for
Dynamic Systems. Springer Verlag, 2000.

[Patton89] Patton R.J., Frank P., and Clark R. Fault Diagnosis in Dynamic Systems,
Theory and Applications. Prentice Hall, 1989.

[Tjee88] Tjee R.T.H. and Mulder J.A. Stability and control derivatives of the De
Havilland DHC-2 ‘beaver' aircraft. Report LR-556, Delft Univ. of Technology, The
Netherlands,1988.

[Schmidt91] G.Schmidt and T.Strohlein. Relations and Graphs. Springer Verlag, 1993.

[Szalai80] K.J. Szalai, R.R. Larson, and R.D. Glover. Flight experience with flight
control redundancy management. In AGARD Lecture Series No.109. Fault Tolerance
Design and Redundancy Management Techniques, AGARD Lecture Series, pages 8/1-
-27, AGARD, Neuilly-sur-Seine, France, October 1980. AGARD.

[Willsky76] A. S. Willsky. A survey of design methods for failure detection in dynamic
systems. Automatica, 12:601--611, 1976.

[Yeh-AAC96] Y.C. Yeh. Triple-triple redundant 777 primary flight computer.

IEEE Aecrospace Applications Conference, February 1996.

Section #6

Flight testing results of the application
of the fault tolerant schemes.

Section #6 — Table of Contents

List of Symbols (Section #6)

6.1. — Flight Testing of the SFDIA Scheme
6.1.1. — Definition of the SFDIA Flight Testing
6.1.2. — Design of the SFDIA Maneuvers
6.1.3 — Description of the SFDIA software
6.1.4. — Results of the SFDIA (SFA) Flight Testing

6.2. — Flight Testing of the AFDIA Scheme
6.2.1. — Definition of the AFDIA Flight Testing
6.2.2. — Design of the AFDIA Maneuvers
6.2.3 — Description of the AFDIA software
6.2.4. — Results of the AFDIA Flight Testing

List of Symbols (Section #6)

English

p

Aircraft angular velocity around the x body axis (roll rate), rad/sec

q Aircraft angular velocity around the y body axis (pitch rate), rad/sec
r Aircraft angular velocity around the z body axis (yaw rate), rad/sec
Greek

o Angle of attack, rad or deg

B Angle of sideslip, rad or deg

6 Pitch Euler angle, rad or deg

o Control surface deflection, rad or deg

(i) Roll Euler angle, rad or deg

1 Yaw Euler angle, rad or deg

Subscripts

A Aileron

E Elevator

L Left side

R Right side

R Rudder

Acronyms

AC Automatic Control

AFA Actuator Failure Accommodation

AFDI Actuator Failure Detection and Identification

AFDIA Actuator Failure Detection, Identification, and Accommodation
EBPA Extended Back Propagation Algorithm

DNN Decentralized Neural Network

DQEE Decentralized Quadratic Estimation Error

FDI Failure Detection and Identification

GCU Ground Control Unit

MC Manual Control

MLP Multi-Layer Perceptron

MNN Main Neural Network

MQEE Main Quadratic Estimation Error

NNC Neural Network Controller

OBC On-Board Computer

OQEE Output (of NN) Quadratic Estimation Error

PID Parameter Identification

PTBU (Neural) Parameters To Be Updated (at each computational step)
PWM Pulse Width Modulation

RTW Real Time Workshop

SFA Sensor Failure Accommodation

SFDI Sensor Failure Detection and Identification

SFDIA Sensor Failure Detection, Identification, and Accommodation

6.1. — Flight Testing of the SFDIA Scheme

6.1.1. — Definition of the SFDIA Flight Testing

Sensor Failure Detection, Identification, and Accommodation (SFDIA) scheme
Sub-scheme 1 — SFDIA following pitch rate gyro failure (for different failures),
Sub-scheme 2 — SFDIA following yaw rate gyro failure (for different failures),
Sub-scheme 3— SFDIA following roll rate gyro failure (for different failures).
Requiring:

- MNN, “replicating” p,q,r;

- p_DNN (“replicating” p), ¢ DNN (“replicating” q), r_ DNN (“replicating” r)

6.1.2. — Design of the SFDIA Maneuver
The description is provided for pitch rate gyro failures; identical flight profiles

were designed for failures involving roll rate and yaw rate gyros. The aircraft is in
manual control through the GCU. A tentative flight pattern is shown in Figure 6.1 while
the entire SFDIA maneuver is summarized in Figure 6.2.

Step #0
Take off.

Step #1
Turn on the on-line learning for the MNN, the ¢_DNN, the p_DNN, and the r DNN (on-
line approximators) at nominal conditions as soon as the plane reaches altitude.

Step #2
With MNN and DNNs learning on, the pilot performs mild rolling, pitching, and yawing

maneuvers with the goal of “fine tuning” on-line the learning of the MNN and DNNs.

Step #3
At point A in the flight path (see Figure 6.1), in the middle of a mild pitch, the pilot
triggers the failure of a pitch rate gyro.

NOTE :

Due to the pitch rate gyro failure, q from the sensor and q from the MNN and q DNN
outputs should be substantially different. Thus the MNN parameter “MQEE” and the
q DNN parameter ‘DQEE, should have peaks exceeding the “a-priori” selected
detection and identification thresholds. If the detection and the identification are both
positive, according to the logic outlined in Section #4, the output of the q DNN
functionally replaces the measurement from the gyro. From that point on the ¢ DNN
output should follow the nominal value (without the failure) of the pitch rate gyro.

Step #4
At point B restore nominal conditions and “remove” the sensor failure. The learning for

the MNN and the DNN:Ss is still turned on.

Step #5
At point C turn the MNN and DNNs learning off.

Step #6
Landing. Data downloading concludes the flight.

SFDIA - Pitch Gyro Failure - Flight Path

Step #5

. Step #4 Step #3
NOTE PontC Point B Point A
The location of ¢
points B,C on the flight /

path is not critical.

Approx. 3-10 sec.

Runway
Approx. 3,500 ft.

Approx. 6,000 ft
Figure 6.1 — Flight path of the SFDIA (pitch gyro failure)

SFDIA Pitch Gvro Failure

MNN, DNNs learning is on !

»l
ad VI

MNN,DNNs learning is ... MNN,DNNSs learning

turned on. Failure Time ! is still on !
ailure 11 s

1 1

Step #1 Step #2 Step #3 Step #4 Step #5 Step #6
Point A Point B Point C
LEGEND (failure injection) | (failure removal)

SFDIA = Sensor Failure Detection , Identification

And Accommodation . .

MC = Manual Control Reversible at any time
through GCU

Figure 6.2 —-Bar-coded task sequence for SFDIA (pitch gyro failure)

6.1.3. — Description of the SFDIA software
The SFDIA scheme has been described with details in Section #4. The scheme

was developed and tested in a Matlab/Simulink environment prior to being interfaced on
the OBC through the use of Real Time Workshop (RTW) utility in Matlab. The general
Simulink SFDIA scheme is shown in Figure 6.3 below.

40 -
xyu best xyu fail [—— g hea. xyu ¢ xyu2 xyu [TT.t v
=40
. i LE est HR2 Fatlures Split & Noise
Zignal:
Mominal Values
= e
est i=1:figure;plotct.ress(:.i).t.1.2°thi(iy ae(:, D)

M P xyy tigure:plottt,nom(:,i).t.1ail(:, i)t estC:, i)t ace:, D))

Approximation

Figure 6.3 — General Simulink SFDIA scheme

The PID flight data collected within the 7 flights of Phase #5 were used for the
development of the SFDIA scheme. In fact, the data allowed performing parametric
studies toward the selection of “sub-optimal” architectures for the different neural
estimators. Although only the p_DNN, the ¢ DNN, and the r DNN were required for
this SFDIA effort, additional DNNs estimating other dynamic parameters were also
evaluated. The Simulink scheme with the different DNNs is shown in Figure 6.4 while
the selected architectures for the different neural approximators are shown in Table 6.1.

MNN p DNN q DNN r DNN
Input parameters P, Q, I, Og, 84, | 1,04, Or, @y | Og,a,V p, 84, O, ay,®
(at previous instants) Sr,az,D,0
Output (current instant) | p,q,1, p estimate | q estimate | r estimate
estimates
Input data pattern 3 3 3 3
Total number of inputs 27 12 9 15
Number of hidden layers | 1 1 1 1
Number of neurons in 10 5 3 6
The hidden layer(s)
Final neural 27/10/3 12/5/1 9/3/1 15/6/1
configuration
Learning rate coefficient | 0.05 0.05 0.05 0.05
Momentum coefficient 0 0 0 0
Total number of neural 339 83 42 87

parameters updated at
each step

Table 6.1 — Architectures of the neural approximators in the SFDIA scheme

X [xal} I-——blx nx ’—

Nonlinear Nermalization
Terms | Vector lx
" |Selector jl
Vector
=1 - I
E(:—IJ"' " [selector 4 .
»LE DE normalizazion2
ann
Vector
» »
" Selector X
n| Vector v
" |selector jl
> LE DE normalizazion3
qnn
Vector
»
Plselecte P
o | Vector .
7 |selector ol
»{LE DE normalizaziond
aznn
o | Vector »lx
" |Selector hal
| Vector v
Tlselector bl =
@ {LE DE normalizaziond ¢
LE bnn
| Vector lx
" Selector
o | Vector >y
" |Selector jl
i LE DE normalizazionB
pnn
o | Vector %
" |Selector
o | Vector v
" |Selector =
| LE DE normalizazion?
mn
Vector
. '
" Iselector *
o | Vector »ly
Tlselector e
»{LE DE normalizaziong

Figure 6.4 — Simulink scheme with the different DNNs

Following the selection of the architectures, the neural estimators described in Table 6.1
were simultaneously trained off-line through 10 iterations of the entire set of PID flights
with a total of 76 different PID maneuvers.

6.1.4. — Results of the SFDIA (SFA) Flight Testing

A total of 7 flights were conducted with the YF-22 within Phase #5 with the
purpose of collecting flight data for PID purposes and for performing the off-line training
for the neural estimators (MNN, p_DNN, q DNN, and r DNN) within the SFDIA
scheme. Due to time constraints no SFI and SFDI flight tests were conducted; the flight-
testing focused directly on the general SFDIA scheme. A total 3 SFDIA flights were
conducted within Phase #6 with each flight dedicated to the failure of one sensor (1%
SFDIA flight for ‘p’ failure, 2" SFDIA flight for ‘q’ failure, and 3™ SFDIA flight for ‘r’
failure). In particular, a soft and a hard failure were “injected” on each gyros at a certain

instant ¢, by the pilot through the GCU; the failures were then “removed” through the

GCU after 20-30 sec. To evaluate the SFDIA performance the following parameters

have been introduced to characterize off-line the SFDIA (SFA) performance.

e T;r: instant in which the NN learning is stopped;

e T4 instant in which the sensor fault is declared. In other words this instant represents
the “estimation” of the instant #.

e %LE: it quantifies the percentage of time the NN learning is preventively stopped due
to noise or mapping error before the real occurrence of the fault

%LE, =——Z(1 — LE,(k)) (6.1)
f k=0
e %AE: it quantifies the percentage of time the a sensor is incorrectly declared failed
before the real occurrence of the fault:

%AE, = 12(1 AE(K)) 6.2)

f k=0
o N-False: number of false alarm prior of the sensor failure declaration
e Detection Ratio (DR): it is the ratio between the peak of the filtered residual SM(k)
caused by the fault, and the peak of the same signal prior the occurrence of the fault:
max (abs[S2(k)])

Detection Ratio = <=2 (6.3)
max (abs [S2(k)])

O<k<k,

where T'e kprepresents an extra delay time after # chosen to capture the entire spike of the
residual caused by the fault.
To evaluate the effectiveness of the sensor failure accommodation (SFA) the
following parameters are evaluated after the accommodation:
e MEE, STDEE, and POWEE: they represent respectively the mean, variance, and
power of the estimation error sequence after enabling of the sensor accommodation.

MEE = k) - p(k
o F)Zk y (k) - 3(k)
STDEE = \/k Z[(y(k) y(k))- MEE] (6.4)
end — f k=k,

POWEE = MEE? + STDEE?

Essentially these parameters measure the effectiveness of the NN approximator in
reproducing the physical parameter at nominal conditions.

Examples of the flight-testing results are shown below. Figures 6.5-6.7 show
time histories at nominal flight conditions to highlight the accuracy of the off-line
training for each of the p DNN, q DNN, and r_DNN (with the data collected from Phase
#5 for 76 different PID maneuvers). The SFDIA results are shown in Figures 6.8-6.13
for a soft failure (Type #3 described in Section #3), and in Figures 6.14-6.19 for an hard
failure (Type #1 described in Section #3) for each of the roll, pitch, and yaw gyros. The
soft failure (Type #3) is modeled as a 5 sec ramp to a +5 deg/sec bias while the hard
failure (Type #1) is a quasi-instantaneous +5 deg/sec bias.

p (deg/sec)

g (deg/sec)

Nominal flight conditions - On-line learning for the SFDIA NNs
BD v 1 ¥ T LI
—— p Nominal
—— p DNN

1

I 1 I 1 1
300 305 310 315 320 325
Time (sec)

Figure 6.5 — Nominal flight conditions. Learning of the p_ DNN

Nominal flight conditions - On-line learning far the SFDIA NNs
— ¢ Nominal |7
f —— ¢ DNN

"

30

25

1
—

20 .
154 y l i ' N
1 ‘1) ’f‘; | ,'| 1

N
o o
T T

1

1 1 1 1 1 3 1 1 1
320 325 330 335 340 345 350 35 30 IS
Time (sec)

Figure 6.6 — Nominal flight conditions. Learning of the q_ DNN

‘ Nominal flight conditions - On-line leaming for the SFDIA NNs

1 1 L i i I 1 I i
10F — r Nominal |1
— t DNN
o
[+}]
@
o
[x3]
h=2
1 1 i 1 1 1 1 1 1 1
300 305 310 35 320 325 330 335 340 345
Time (sec)
v Figure 6.7 — Nominal flight conditions. Learning of the r DNN
‘ Failure conditions - Soft failure (Type #3) on roll gyro at =276.31
B0 — p with failure |
—— p nominal (w/out failure)

—— p estimate from p-DNN [
iy
@
@
&
R=A
o

o
o
[]

1

1 1 1 1 L 1 1
280 285 290 295 300 305 310
Time (sec)

Figure 6.8 — 1% SFDIA flight. Soft failure (Type #3) for roll gyro.

. ' Failure conditions - Soft failure (Type #3) on roll gyro at t=276.31 sec

Zoomed around failure time !
10F

p {deg/sec)

— p with failure i

— p nominal (w/out failure)

— p estimate from p-DNN
i 1

280 282 284 286 288 250
Time {sec)
. ~ Figure 6.9 - 1% SFDIA flight. Soft failure (Type #3) for roll gyro (ZOOMED).
Failure conditions - Soft failure (Type #3) on pitch gyro at t=326.75 sec

35 .
30

25 ki
20

15

10

q (deg/sec)

[— q with failure
15 H — 4 nominal (w/out failure)
— ¢ estimate from g-DNN
1 1 1 1 1 1 1 1 1
325 330 33 340 345 30 35 WO 35
Time (sec)
‘ Figure 6.10 — 2" SFDIA flight. Soft failure (Type #3) for pitch gyro.

Failure conditions - Soft failure (Type #3) on pitch gyro at t=326.75

gk l) P Zoomed around failure timel i
7F Hl 1
6 -
~ 5F .
(&)
3 [
> 4r .
RS
(=0 3 N |
2t " 1
| y |
— g with failure
0H — g nominal (w/out failure) .
— ¢ estimate from g-DNN
324 326 328 330 332 334 33 338 340 342
Time (sec)
~ Figure 6.11 - 2" SFDIA flight. Soft failure (Type #3) for pitch gyro (ZOOMED)
‘ Failure conditions - Soft failure (Type #3) on yaw gyro at t=310.52 sec
15 T ¥ V T T T]] T
10 * .
5t
o 0Of
Q
o
oy
B 5t '
e ‘
|
A0+ 4 !
(10 ek
! l
' ' |
15k -
—— rwith failure
— r nominal (w/out failure)
-20 | — r estimate from r-DNN .
305 310 315 320 325 330 335 340 345

Time {sec)
Figure 6.12 3" SFDIA flight. Soft failure (Type #3) for yaw gyro

‘ Failure conditions - Soft failure (Type #3) on yaw gyro at t=310.52 sec

10} — r with failure i
—— t nominal (w/out failure)
—— r estimate from -DNN
| Zoomed around failure time !
5t \ -
— ‘i}l”ll
S I
-2 0f
iy
= H lf' ﬁ ‘I |
JJ) 'I
5L «
iy
I |
Aok “ hf' : |]
(T i
i L] 1 } l'l'. b di.'k v 1]
312 314 36 38 320 322 324 3B 328
Time (sec)
‘ ~ Figure 6.13 - 3" SFDIA flight. Soft failure (Type #3) for yaw gyro (ZOOMED)
Failure conditions - Hard failure (Type #1) on yaw gyro at t=338.62 sec
—— t with failure
1l — rnominal (w/out failure) | |
—— r estimate from r-DNN
20+
10F
Xy
]
5 0
2
T 0t
20k i
30k i
_40 L 1 1] 1 1 1 i
340 350 360 370 380 390
Time (sec)

. Figure 6.14 — 1* SFDIA flight. Hard failure (Type #1) for roll gyro

Failure conditons - Hard failure (Type #1) on roll gyro at t=302.52 sec

' ' ' omed around failure time
20+ 4
15+ 4
10F P .
g
o
& 5]
&
o
OF]
5L i
— p with failure
A0H — p nominal (w/out failure) T
—— p estimate from p-DNN
1 1 i UK 1 1 1
305 310 315 320 325
Time (sec)

Figure 6.15 — 1% SFDIA flight. Hard failure (Type #1) for roll gyro (ZOOMED)

Failure conditions - Hard failure (Type #1) on pitch gyro at t=383.18 sec

T T T T T T T T T

30

’ | & w 'f{
I

o
; |
> 10|)
= n h
[~ | i
ol ‘ el 'l I i
10k i
— g with failure '
—— g nominal (w/out failure) 1
— q estimate from g-DNN
20T I i T i

375 380 38 390 385 400 405 410 415
Time (sec)

Figure 6.16 — 2" SFDIA flight. Hard failure (Type #1) for pitch gyro

. | Failure conditions - Hard failure (Type #1) on pitch gyro at =383.18 sec

30 1 1 1§ 1) T
— qwith failure : Zoomed around failure time |
— ¢ nominal {(w/out failure)
25 [— g estimate from g-DNN
20+
g
£ 15+
&
KA
fax
10r
5k
OF
1 1 1 1 1 1 |
380 385 380 395 400 405 410
Time (sec)
Figure 6.17 - 2" SFDIA flight. Hard failure (Type #1) for pitch gyro (ZOOMED)
Q Failure conditions - Hard failure (Type #1) on yaw gyro at t=338.62 sec
—— rwith failure
0l — rnominal (w/out failure) | |
—— r estimate from r-DNN
20¢r I -
I
10

I
,|]
l

r ({deg/sec)
3_—_‘1_
;E"
—
S
j‘*
{é‘
| —:_'"3—-__

0k
20F i
-30 F \ .
40t i
1 1 1 1 1 [l
340 350 360 370 380 390
Time (sec)

‘ Figure 6.18 — 3" SFDIA flight. Hard failure (Type #1) for yaw gyro

3
.

Failure conditions - Hard failure (Type #1) on yaw gyro at t=338.62

20F I — r with failure .
— t nominal (w/out failure)
15] —— r estimate from r-DNN

Zoomed around failure time |

10

r (deg/sec)

1 1 1 "_m ! 1 1 1 1
335 340 345 350 355 360 365 370 375

Time (sec)
Figure 6.19 — 3" SFDIA flight. Hard failure (Type #1) for yaw gyro (ZOOMED)

Since the emphasis was on the SFA portion of the SFDIA scheme, very low values of the
SFD and SFI thresholds — described in Section #4 - were introduced. Therefore, the
“false alarm” issue was not considered in this effort. The SFD and SFI thresholds are
listed in Table 6.2.

Quadratic Estimation Error Parameters | Threshold values
MQEE 4 deg’/sec’

DQEE, 2.25 deg’/sec”
DQEE, 2.25 deg’/sec”
DQEE, 2.25 degz/sec2

Table 6.2. — Thresholds for the SFD and the SFI

The SFDIA results are summarized in Table 6.3 below.

p-soft p-hard |q-soft q-hard r-soft r-hard

failure failure |failure failure failure failure

tuiture (sec) | 27632 302.52 326.74 383.18 310.52 338.62
tE 281.88 304.11 336.08 383.96 316.02 341.52

tiE 283.38 304.82 337.66 384.32 317.14 342.26
MEE 1.53489 1.74535 2.234225 1.543530 1.598763 1.84990
STDEE 1.94535 1.99702 2.01279 2.14389 2.07564 2.19778

Table 6.3 —Results of the SFDIA for each of the failures

The analysis of the SFDIA results confirms the capabilities of the MLP-based
EBPA-trained neural approximators for providing reliable on-line estimates.

Each of the failures was detected; as expected the soft failures had longer
detection delays, ranging from approx. 5 sec to 16 sec since the failures had slow
transients. The detection performance were instead satisfactory for each of the hard
failures with detection delays ranging from 0.5 sec to 3 sec. Again, since the selected SFI
and SFD thresholds were fairly low, no false alarms were reported in the analyzed flight
data. A more comprehensive flight-testing program should focus on the “failure
detectability vs. false alarm” issue.

Regardless of the detection delays, the accommodation performance were from
satisfactory to excellent for each of the failures due to the extensive learning accumulated
by each of the DNNs from both the off-line training phase and the on-line learning.

6.2. - Flight Testing of the AFDIA Scheme

6.2.1. — Definition of the AFDIA Flight Testing

Actuator Failure Detection, Identification and Accommodation (AFDIA) scheme
Sub-scheme 1 — AFDIA following aileron failure
Sub-scheme 2 — AFDIA following elevator failure
Requiring:

- MNN, “replicating” p,q,r;

- Sum of the absolute values of 3 cross-correlation functions (R_pq, R _pr, R_qr) with

N =10;

- Sum of the absolute values of the auto-correlation function (R_rr) with N=10;

- Longitudinal MLP neural controller (for pitch accommodation);

- Lateral MLP neural controller (for roll accommodation);

- Directional MLP neural controller (for yaw accommodation).

6.2.2. — Design of the AFDIA Maneuver
This is the most critical scheme since it includes the AFDI and the AFA scheme.

All the different computations (for the neural networks and the statistical parameters) will
be involved. The description is provided for elevator failure; however it is functionally
identical to the case of aileron failure. The differences between the two failures are
outlined below:

Aileron Failure

Surface locked at trim position (either Sa-right OF Oa-Lent = 0 deg.).
Compensating deflections :

- Or from DIR-NNC to offset the failure-induced yawing;

- symmetric g from LONG-NNC to offset the failure-induced pitch;
- asymmetric 8g from LAT-NNC to offset the failure-induced roll.

Elevator Failure

Surface locked at trim position (either Sg rignt O Og-Lent ~ 0 deg.).

Compensating deflections:

- Og from DIR-NNC to offset the failure-induced yawing;

- remaining “healthy” &g (either right or left) from LONG-NNC to offset the failure-
induced pitch;

- asymmetric (nominal) 6, from LAT-NNC to offset the failure-induced roll.

The design of the AFDIA Scheme #4 (AFDIA) for elevator failure follows below. A
tentative flight pattern is shown in Figure 6.20 while the entire SFDIA maneuver is
summarized in Figure 6.21.

Step #0
Take off.

Step #1
Turn on the on-line learning for the MNN estimator at nominal conditions as soon as the
plane reaches altitude. The MNN should “replicate” the values of p,q, and r.

Step #2
After the MNN learning has been turned on, the pilot performs mild rolling, pitching, and

yawing maneuvers. This has the goal of “fine tuning” the learning of the MNN.

Step #3
Perform mild pitching maneuvers.

Step #4
At point A in the flight path, in the middle of a mild pitching, the pilot triggers an
elevator failure (either on the right or the left elevator).

Step #5
Following the failure there should be a clear dynamic trend to be used by the DI

(Detection and Identification) scheme. After setting thresholds (following analysis of the
AFDI data) for the parameters:

MQEE’ZlRPq ’ZlRpr ZRqr

let the DI (detection and Identification) scheme on the OBC proceed to the next step
(AFA) by switching the cost function to be minimized by the neural controllers.

R

4 rr

Within Step #5 the following scenarios can actually take place:

Scenario #1 : If “D = negative” and “I = negative” following the “injection” of
the failure, then “restore” nominal conditions. The AFDIA testing is then.

Scenario #2 : If “D = positive” and “I = negative” following the “injection” of
the failure, then “restore” nominal conditions. The AFDIA testing is then unsuccessful.

Scenario #3 : If “D = positive” and “I = positive” following the “injection” of the
failure, then the AFDIA logic in the OBC proceeds to Step #6.

Step #6

Following Scenario #3 from Step #5, at point B in the flight path switch the cost
functions at the output layer of the 3 AFA MLP controllers (LAT_NNC, LONG_NNC,
DIR_NNC) with the goal of restoring equilibrium conditions (as described in Section #4).

Step #7

At point C send the following commands at the same time :

- “restore” nominal (no-failure) conditions on failed elevator (left or right);
- “return” to manual control;

- “revert” the learning of the 3 NNCs to “mimic” nominal deflections.

Step #8
Turn off the learning of the DIR-NNC, LONG-NNC, and LAT-NNC at nominal
conditions.

Step #9
Turn-off the learning for the MNN and stop the on-board computations of:

2[R 2R IR, LR,

Step #10
Landing. Data downloading concludes the flight.

>

AFDIA Elevator Failure - Flight Path

Step #7
Point C Step #6
Point B
¢ Step #4

Point A

Approx. 10-20 sec.

Runway
Approx. 3,500 ft.

Approx. 6,000 ft
Figure 6.20 — Flight path of the AFDIA (elevator failure)

. AFDIA Elevator Failure

AFA controllers AFA controllers
in pre-failure in failure mode
“mimicking” mode S:)eg éf 5 (restoring AFA controllers
equilibrium in post-failure
Step #4 conditions) “mimicking” mode

Step #2 Step #3 Step #6 Step #7 Step #8

Step #0 Step #1 T Step #9
Reversible at any time
through the GCU

LEGEND

AC = Automatic Control

AFDIA = Actuator Failure Detection, Identification,
Accommodation

MC = Manual Control

Figure 6.21 - Bar-coded task sequence for AFDIA (elevator failure)

6.2.3 — Description of the AFDIA software
The general AFDIA scheme has been described with details in Section #4. Two

failure modes (aileron failure, and elevator failure) were planned. Some of the hardware
components of the AFDIA scheme (control/switch board) were described in Section #2.
This section provides a description of the on-board AFDIA software.

Again, 3 neural controllers (LAT_NNC, LONG_NNC, DIR_NNC) were designed
for the AFDIA and AFA schemes. The on-board computer (OBC) sends out the control
commands through the control/switch board. Each control surface on the aircraft can be
either controlled by the pilot, OBC, or be locked at a certain angle (failure mode). The
YF-22 electronic payload has the ability to be configured for different kinds of flight test
with or without actuator failures, as described in Table 6.4 below.

Surface Controlled by controller | Locked by controller
(Failure mode)

Left Elevator Yes Yes

Right Elevator Yes Yes

Left Aileron Yes Yes

Right Aileron Yes Yes

Left Rudder Yes No

Right Rudder Yes No

. Table 6.4 — Possible AFDIA surface configurations

During the flight, the pilot triggers the failure by flipping the control switch on the
GCU. The receiver receives the control signal and sends it to the control/switch board.
The control/switch board transfers the command and sends it to the OBC. The OBC
selects the flight mode according to the “config” file stored in the flash disk - pre-
programmed and loaded in the pre-flight software configuration prior to take-off - and
sends out the controller commands — as calculated on-line by the 3 neural controllers
LAT NNC, LONG_NNC, DIR_NNC - to the control surfaces through the control board.

Each of the neural controllers (LAT NNC, LONG_NNC, DIR_NNC) — described
with details in Section #4 — is a 1-hidden layer Multi-Layer Perceptron (MLP) featuring
on-line real-time adaptation of the neural architecture through the Extended Back
Propagation Algorithm (EBPA). A N=10 instant window was selected for all the cross
correlation functions (R, Rpr Ry) and the auto correlation function (R,). The final
selected input/output relationships and relative architecture of these neural controllers are
outlined in Table 6.5 below.

LONG NNS LAT NNC DIR NNC
Input parameters q, V, a,, g p, I, @y, 04 OR p, I, 3y, 04, OR
Output 3 O Or
Input data pattern 3 3 3
Total number of inputs 12 15 15
Number of hidden layers | 1 1 1
Number of neurons in 5 6 6
The hidden layer(s)
Final neural configuration | 12/5/1 15/6/1 15/6/1
Final neural configuration | 12/5/1 15/6/1 15/6/1
Learning rate coefficient | 0.2 0.2 0.2
Momentum coefficient 0 0 0
Total number of neural 83 117 117
parameters updated at
each step

Table 6.5 — Selected architectures for the neural controllers

The scheme to trigger the failure mode is the single most critical link in the design
of the WVU YF-22 payload. For the general safety of the operations, the pilot on the
ground should be able to trigger the failure mode or regain the control of the plane at any
time during the flight. According to the design, the pilot has a command switch on the
GCU to set which “flight testing mode” the plane is in. When the on-board receiver
receives the command signal from the GCU, it sends the PWM signal to the control box.
The control box then decides the width of the signal. If it is wider than a selected
threshold the control voltage is “high”, otherwise it remains “low”. When the OBC reads
the “high” voltage, it reads the “config” file stored in the flash card to decide which
surfaces to be locked/controlled. Next, the digital output on the data acquisition card
sends out the selection signal to the control box. The serial port on the OBC sends out
the controller command or the locking position to the command module in the control
box. Next, the command module converts the command to PWM signals. According to

the control voltage and the digital selection signal from the OBC, the switchboard decides
. which PWM signal (from the receiver or from the command module) to use for each
channel and send it to related servos. As an additional safety measure, if any of the
components above is not working properly, the failure mode will not be triggered. The
scheme was successfully tested in lab tests prior to be featured during the AFDIA flights
in Phase #7. The information flow for the process described above is shown in Figure

6.22.
C
Receiver ‘T%T% PWM to | Highllow | Onboard ction
CMOS Voltage Computer
SIO PWM
Commands Commands
Command Switch
Module »| Board > Servos
Servos control ?
signal (PWM)
Figure 6.22 — Flow of the “failure” commands
. The general block diagram of the AFDIA sofiware is shown in Figure 6.23.

Tnitialize narameters

v

Tnitialize

v

Tnitialize samnling

v

T.0ad surfaces

v

T.0ad servos

v

T.0ad nretrained NN

Signals from
DAQ

v

Calibrate sensor

<

<Pt _>

Y

Nenral Networks

T.0ad confio file

v

Select channels

v

Calibrate servo

Digital outont

v

v

Send ta serial nort

Send to Control hox

End?

Y
Fnd

Figure 6.23 — Block diagram of the AFDIA software

6.2.4 — Results of the AFDIA Flight Testing
In addition to the pre-training of the neural estimators of the SFDIA scheme, the

flight data collected for PID purposes within the flight testing activities of Phase #5 were
also used for the pre-training of the neural controllers at nominal conditions (so that the
neural controllers could “learn” the inverse dynamics at nominal conditions). Once
again, the PID data showed to be very suitable for the pre-training of neural estimators
and neural controllers. Due to time constraints, only the AFA scheme for the failure of
the aileron actuator was tested in Phase #7 of the flight testing program. A total of 3
flights were performed for AFA/AFDIA purposes within Phase #7 during which 4 aileron
failures were introduced. The failure consisted in locking the right aileron at trim
(neutral) position during the flight. This position was then stored in the flash card of the
OBC. The servo for the right aileron was also calibrated before the flight allowing the
ability for the OBC to lock the right aileron at the trim position perfectly. The AFA
flight-testing results relative to Failure #1 are shown in the figures below. Figure 6.24
shows the time history of the command switch voltage for the entire 2" AFDIA flight
highlighting that the aileron failure has been triggered and released twice during the
flight.

B L) T T 1 T L] ¥

Voltage (volt)
(]

0 100 200 300 400 500 600 700
Time (sec)
Figure 6.24 — 2"! AFDIA flight. Command switch voltage

Whenever the command signal is set at “high” voltage (> 4.5 volt), the aileron
failure is triggered and released when the command signal goes back to a low voltage (<
4.5 volt). Thus, the first aileron failure was triggered at 252.04 sec (computer time) and
“removed” at 360.4 sec; the second aileron failure was instead triggered at 400.04 sec and
removed at 482.94 sec. Throughout the duration of these failures, the right aileron has
been locked at the trim position, as shown in Figure 6.25.

15 T T T L) T T 1

Failure #1 triggered at t=252.03 sec., removed at 360.35 sec.

Failure # triggered at t=400.04 sec., removed at 482.94 sec.

10+ .

= hF .
@
&
c
2
=2

s D . -
b=
o™
=

5 -

0k 4

-15 1 1 1 1 1 1
0 100 200 300 400 500 600 700

Time (sec)
Figure 6.25 — 2" AFDIA flight. Deflections of the right aileron

Throughout the duration of the failures on the right aileron the left aileron is
commanded by both the LAT NNC (roll neural controller) and the pilot through the GCU
during the turns (along the oval flight path).

The evaluation of the AFA performance of the roll neural controller can be
performed through a detailed analysis of the time histories of the lateral parameters. The
time history of the roll angle is shown in Figure 6.26. It should be pointed out that
through the GCU the pilot keeps the YF-22 aircraft on a semi-oval path at an altitude
between 1,000-1,200 ft through coordinated turns. The pilot first triggers the failure at the
beginning of a straight path. Immediately after the trigger of the failure the roll NNC
tends to regain leveled wings by calculating compensating deflections for the “healthy”
left aileron. After a few seconds, at the end of the straight path (around t=262 sec), the
pilot needs to proceed to turn. Since the pilot “knows” that the right aileron is locked, his
maneuver is a bit slower and tentative. Finally, around t=276 sec, the roll NNC is turned
on again and tends to re-level the wings until the next turn.

Failure # triggered at 1=262.03 sec. and removed at t=360.35 sec.
YF-22 subjected to 5 manual tums to stay on the aval course.
4 successfull AFA - 1 unsuccessfull AFA (310 sec - 320 sec)

T T T T T 7 T T T T T

AFA AFA
B AFA Rulff:gmrol Roll Control Roll Controt
ngrc::lg' e LAT NNC LATNNC yurming aircraf
turning aircraft
AFA A ing ai tuming aircraft
turning aircraft turning aircraft | ™MC)
b Relt Control MO) l | (MC) MC) ‘
LAT NNC

Lo]
| | |
| | |
| ! |
I |

I
I
I
f
[
!
I

|
10 | | | \—
| | I
'go ‘ | I
z » | | I [
B I ! ! | |
o1 | | | (.
I I
I
| ! ! ! (-
40 I ! | | Unsuccessfull| -1
|] | | AFAl | I
! | | !]
@ | | | | i
| | !
l | | | ' |
|
sl |\ -
l FAILURE I MC - Manual Control
| | I | | | l 1 | 1 I
250 260 270 280 20 300 310 320 330 340 350

Time (sec)

Next the pilot initiates another turn, still with the locked right aileron. This time
his maneuver is sharper and somewhat shorter so that the aircraft is brought quicker at the
beginning of another rectilinear path where the roll NNC is turned on again (around
t=290 sec), leading, again, to leveled wings. This process continues until the failure is
removed at approx. 360 sec. Throughout the duration of Failure #1 there was one
instance when the roll NNC was unsuccessful (between 310 sec. and 320 sec.) and was
turned off by the pilot through the GCU right before the pilot performed another turn.
The outputs of the roll NNC, in terms of commanded deflections for the left aileron, and
the left aileron deflections commanded manually by the pilot through the GCU are shown
in Figure 6.27.

T I T I T T T T T ¥ T

= AFA AFA AFA AFA AFA AFA

I |
| |
I I
I |
I |
I |
| |
| |
I I
I I

| |
I I I
I | |
I | I
| I I
| I I
| I |
i | |
| | |
I I |

I
:
|
I
I
I
I
I
|
I
I
I
I

Left aileron (deg)

I
!
I
|
I
|
|
I
!
I
I
|
:
I
|
|
|
[

MC - Manual Control
] 1 !] 1 1]

Roll control Roll control Roll control Roll control Roll control Roll control |
LAT NNC LAT NNC LAT NNC LAT NNC LAT NNC o LAT NNC
tuming aircraft tuming aircraft turning aircraft turning aircraft turnlnraéalrcraft
) (MC) (MC) (MC) (MC)
o | |
A I

1 |
250 260 270 260 290 300 310 320 330 340 350

Time (sec)

Figure 6.27 - 2nd AFDIA flight. Left aileron throughout “Right Aileron-Failure #1”7

A total of 4 right aileron failures were “injected” within the 3 AFA (AFDIA)
flight tests with each failure lasting an averaging of 70-80 seconds. Throughout these 4
failures the AFA LAT _NNC was turned on 19 times; for 16 instances the neural control
allowed to regain the lateral control (wing level conditions), at times with some
oscillations. In 3 instances the pilot felt that the LAT NNC was not performing
satisfactorily and returned to direct manual control, without disengaging the failure, prior
to executing a turn. In none of these maneuvers the aircraft was flown into dangerous
conditions. Due to time and resource constraints the AFDIA flight activities only
involved failures on the right aileron.

Although the scope of the AFDIA investigation was limited, the experimental
results confirmed the potential of neural controllers. The demonstrated capabilities of
evaluating on-line a control sequence using some form of supervised teaching - through
the application of EBPA-type or similar algorithms - make neural controllers a suitable
alternative to ‘gain scheduling-based’ control laws for several flight control problems
involving time varying and/or non-linearity issues.

Appendix A

Copies of publications from the project

Appendix A.1

Authors:
Fravolini, M.L., Campa, G., Napolitano, M.R.

Title:
“A Neural Network Based Tool for Aircraft SFDIA Modeling and Simulation”,

Proceedings of the 2001 IASTED International Conference on Modeling and Simulation,
Pittsburgh, Pa, May 2001

A Neural Network Based Tool for Aircraft SFDIA Modeling and Simulation

Mario L. Fravolini (+), Giampiero Campa (*), Marcello Napolitano (**),
*(+) Department of Electronic and Information Engineering
Perugia University, 06100 Perugia, Italy
(*, **) Department of Mechanical and Aerospace Engineering
West Virginia University, Morgantown, WV 26506/6106

ABSTRACT

This paper presents a Neural Network (NN) based tool for
the modeling, simulation and analysis of aircraft Sensor
Failure, Detection, Identification and Accommodation
(SFDIA) problems. The SFDIA scheme exploits the
analytical redundancy of the system to provide validation
capability to measurement devices by employing Neural
Networks as on-line non-linear approximators. The tool
allows evaluating either the open loop or the closed loop
performance of the SFDIA scheme. Several kinds of NN
approximators and learning algorithms are employed, and
a library comprising all these different adaptive neural
networks is presented. In particular, Resource Allocating
Networks featuring fully tuned Radial Basis Activation
Functions are proposed as one of the most effective
architectures. Finally, the results of a comparative study
of different NN approximators applied to the SFDIA
problem on a detailed nonlinear model of a De Havilland
DHC-2 “Beaver” aircraft are reported.

KEY WORDS: Sensor Validation, Fault Detection,
Neural Networks, Aircraft Modeling and Simulation.

1. INTRODUCTION

The traditional approach to provide fault tolerance
following sensor failure is physical redundancy. Typically
triple or quadruple redundancy is used in critical
application, for example on military and civil aircrafts.
This approach implies a penalty in term of weight, space,
and, consequently, in the overall performance. An
alternative approach can take advantage of the analytical
redundancy [1] existing in the system. In fact, the
information provided by a set of sensors along with a
priori knowledge of the system allows detecting and
identifying the faulty sensor, while estimating the related
variable as a function of other measured variables.

(+) Assistant Professor.
(*) Research Assistant Professor.
(**) Associate Professor.

Research on fault tolerance based on analytical
redundancy has produced a quite mature framework
especially for linear systems [2-3]; but unfortunately, the
assumption of linearity is not often valid throughout the
whole flight envelope of an aircraft, thus the performance
of a fault tolerant scheme based on such assumption can
become inadequate, for example providing a high false
alarm rate in a wide portion of the flight envelope.
Therefore, the control and the SFDIA of an aircraft should
be addressed with non-linear estimation approaches. In
this context, a very promising approach is to employ
Neural Networks as the main nonlinear approximators of
an SFDIA scheme. In recent years many NN-based
SFDIA schemes have been proposed and developed [4-5].
Although the benefits of employing NNs for fault
tolerance purposes within a non-linear flight control
system are clear, the critical dependence of the
performance on the choice of the NN architecture and
learning algorithm it is also well known. Concerning the
NN structure the most used function approximators are
polynomials, rational and Spline functions, Wavelets,
Multi Layer Perceptrons, as well as Radial Basis
Functions (RBF NNs) [9]. Among the issues concerning
the on-line training algorithm there is the time required to
achieve an acceptable learning level, the difference
between local and global learning, and the level of
complexity of the NN architecture. Other important
design issues concern the design of systematic procedures
for the creation of non-linear estimators and the stability
of the learning algorithm. Furthermore, the greatest part
of the SFDIA scheme is often applied only at supervisory
level because of the difficulty of clearly defining the
interaction between the closed loop control law and the
SFDIA scheme. The full comprehension of these issues
requires dedicated simulation software in which it is
possible to simulate the interaction between the closed
loop dynamics of the Aircraft and the dynamics of the
SDFIA system. In this work, the above-mentioned
problem has been specifically addressed and a general
SFDIA software has been designed in the Simulink
environment. The tool allows evaluating either the open
loop or the closed loop performance of the SFDIA
scheme that employs different kinds of NN approximators
and learning algorithms. A library comprising several
different adaptive (i.e. online learning) NNs is presented.

Finally, the results of a comparative study of different NN
approximators applied to the SFDIA problem on a
detailed nonlinear model of a De Havilland DHC-2
“Beaver” aircraft are reported.

2. NEURAL NETWORK-BASED SFDIA

In this section the SFDIA problem it is briefly reviewed.
Reference is made to the general scheme previously
described in ref. [5].

The scheme is summarized in figure 1.

u(l:) sensor
> AIRCRAFT :(k)
> y,(k)

Fig. 1 — General SFDIA scheme

Y. (k)

SFDIA
v

The rationale behind this scheme is based on the
observability property of the system, which allows the use
of analytical redundancy. Analytical redundancy implies
that some system variables are functionally related [1];
namely, a variable y(k) can be expressed as function of a
suitable set of other variables z(k) and inputs commands
u(k). On the basis of this assumption, the outputs of
sensors, measuring different but functionally related
variables, can be processed in order to detect a fault,
identify the faulty component, and finally provide
accommodation. The common way to perform SFDI is to
online monitor a (filtered) residual signal r(k), which is
the difference between the sensor output y(k) and its
estimation y,(k) provided by a proper estimator (in this
work the estimator is a NN). In other words, a supervisory
block, which evaluates a quadratic function of the filtered
residual, monitors the status of the sensor. When this
quadratic function exceeds a predefined threshold, the
state of the corresponding sensor is declared suspect and a
suitable procedure is called to decide on the health status
of this sensor (at the same time the learning of the NN is
stopped in order to avoid the wrong measure from being
learnt). If the state of the sensor is then declared faulty, a
fault procedure is enabled, and an accommodated variable
Ya(k) is provided as output. In case of a multiple physical
redundancy the accommodation usually consists on the
simple replacement of the faulty sensor by a healthy one.
On the other hand, if no physical redundancy is available,
the accommodation procedure substitutes the faulty
measure with the estimation given by the NN
(Va(k)=yy(k)). Several options can be added to this basic
scheme to increase robustness in presence of noisy
measurements and/or intermittent sensor failures [5]. As
for any other SFDIA approach, the following distinct
capabilities are critical:
1) Failure detectability and false alarm rate (the sooner
the fault is detected and the least the number of false
alarm it is, the better is the SFDI system).

2) Estimation error (The least is the estimation error,
the better is the quality of the accommodation).

3. THE SIMULATION ENVIRONMENT

- The Neural Network based SFDIA modeling and

simulation toolbox was built under the Simulink®
environment (by The Mathworks Inc). In particular the
freely available Flight Dynamics and Control (FDC)
toolbox for Matlab [6] provides powerful tools for flight
simulation, flight dynamic analysis, and flight control
system design.

Aircraft Dynamics
Pilot CAS =
= =
&) o
o . ! Failures

Fig. 2 - Modeling and simulation environment

In figure 2 the graphical interface of the proposed aircraft
SFDIA tool is shown. The main blocks of the scheme are
the following:

¢ Aircraft Dynamics: The tool has been built around a
generic non-linear aircraft model, which has a
modular design that provides maximum flexibility to
the user. The aircraft model has been implemented as
a Simulink block-diagram. The model is configured
for the DeHavilland DHC-2 Beaver aircraft, but can
be adapted for many different kinds of airplanes if
required. The model provides a detailed
characterization of aerodynamic forces, wind gusts,
air turbulence, engine model, actuators
(comprehensive of delays and limiters), and sensors
(comprehensive of delays and measurement noise).

e Control Augmentation System (CAS): the block is
implemented with a Stochastic Optimal Feedforward
and Feedback controller as reported in [7].

¢ Pilot commands: the block allows the generation of
arbitrary commands. It emulates typical pilot stick
deflection commands.

e Hard and soft sensor failures: the block injects
(adds) arbitrary soft and hard sensor failures to the
desired measured signals

¢ SFDIA Group: It is the core of the tool and performs
the main SFDIA procedures. It is constituted by two
main sub-blocks:
¢ Approximators: The block contains the Neural

Network based function estimators. In figure 3
the scheme for the estimation of the three gyros
rates p(k),q(k),r(k) is shown. Different kinds of
NN estimator blocks can be selected (the

¥ Noimatzation

v s

available NNs and learning algorithms will be
described in the next section).

SFDIA LOGIC: The block performs the main
threshold based sensor failure detection
identification and accommodation operations
(figure 4 and 5). Two filtered residuals (derived
by filtering the absolute approximation error
with both a “fast” low pass filters and a “slow”
low pass filter) are contemporary evaluated for
each sensor. When the fast filter output is bigger
than a threshold, the corresponding NN learning
is preventively stopped (LE=0), in order to
prevent the possibly wrong signal from being
learnt. When the slow filter output is bigger than
a threshold, the corresponding sensor is declared
failed (AE=0), so the accommodation logic is
enabled, and the estimated signal is fed back
through the controller instead of the faulty one.
For more details about the SFDIA scheme see

[8].

Fig. 3 - Estimators for p(k) q(k) r(k) signals

SFA

Fig. 4 — SFDIA Logic

LE of ‘—Eﬂ—d e
Detection Logic Abs Fast Filters

res
u N '

Identifioation Logic Abs

Fig. 5 - SFDI Lsgic

Slow Filters

4. AN ADAPTIVE NEURAL NETWORKS
LIBRARY FOR ON-LINE LEARNING.

In order to select a suitable optimal SFDIA scheme it is
necessary to test and to compare the performance
achieved by different kinds of online Neural Network
estimators, to this purpose, a Simulink Library containing
several NN architectures has been built (Fig. 6). The NNs
in the library exploit linear, sigmoidal and radial basis as
activation functions and employ different online learning
algorithms:

ADaptive LInear Network: (ADALINE): It can be used
in presence of almost linear aircraft dynamics. The
ADLINE network approximates a vector signal y € R"as

a linear combination of M inputs signals x € ", namely:

Y=Wx where W € R™" is a matrix of real numbers that
are updated online (states). The matrix W is updated by
using a modified steepest descendent gradient in order to
minimize the modified square error between
measurements and estimates the resulting updating law is:

W(k+1)=W(k)-vye(k)x(k)—mod(e,W)

where 7 is the learning rate, e(k)=y(k)-ys(k) is the current
estimation error and mod(e, W) is the “modification” that
stabilizes the rule. Different kinds of such modifications
to the basic steepest descent rule are available, e.g. sigma
modification, e-modification, dead zone and projection
[9-10]. By employing one of the above-mentioned
modifications, it is possible to guarantee the ultimate
boundedness of both estimation error and network
weights, in presence of noise and uncertainty.

Multi-Layer Perceptron with Extended Back-
Propagation. (MLP-EBP): It is a three layer NN, based
on sigmoidal neurons with activation function:

f(net,U,L,T) =—UTfy+L
l+e 7
In the MLP-EBP the back-propagation algorithm it used
not only to update the weights of the input and output
matrices (W(k), V(k)), but also to update the parameters
U.LT, that define the shape of each neuron. The
application of MLP-EBP to SFDIA has been extensively
treated in [5]. The study showed that EBP outperforms the
standard Back-Propagation in terms of learning speed and
approximation accuracy; these characteristics are
particularly suitable for online learning problems.

Radial Basis Function (RBF) (Standard): In the
standard RBF Network the estimations y e ®R™ are

expressed as a linear combination of M Gaussian Basis
functions ¢;(e):

Pi(x) = wio + E.=| Wij(bjﬂx - ”j“) (7
1 2

—U; —— Ay —-u; 8

d)ﬂx p,H):exp(2(;,-2"x u,") (8)

where xe R" is the input vector, the parameters 4 and g;
are the basis center and width respectively. In the basic
implementation the hidden layer neurons are a priori
statically allocated on a uniform grid that covers the
whole input space and only the weight w; are updated.
Although easy to implement, this approach requires an
exponentially increasing number of basis functions versus
the dimension of the input space. For this reason standard
RBF can be applied only for small dimensionality
problems. An inaccurate choice of centers and widths
usually results in a poor performance especially in highly
nonlinear systems. A way to partially reduce the online
computational burden is to update just the weights in the
neighborhood of the most activated gaussian. This
approach has been called Extended-RBF.

Extended RBF (ERBF): A simple criterion to implement
ERBEF is to define an activation radius @™ and to update
the weights of the gaussians that satisfy the relation:

fx-ps|" <a™

Fully Tuned Minimal Resource Allocation Network
RBF (MRAN-RBF): In order to avoid the dimensionality
problems generated by standard RBF, Platt [11] proposed
a sequential learning technique for RBFNs, where the
emphasis was to learn quickly, generalize well and have a
compact representation. The resulting architecture was
called the Resource Allocating Network (RAN) and has
proven to be suitable for online modeling of
non-stationary processes. The RAN provides powerful
method for on-line modeling with only an incremental
growth in model complexity, which renders the algorithm
especially suitable for on-line real-time applications. The
RAN learning algorithm proceeds as follows: At each
sampling instant based on three criteria, the network is
either grown (i.e. some units are added) or the existing
network parameters (the centers 4, the weights w;; and the
variances g;) are adjusted using a suitable online learning
algorithm, which can be are formalized as follows:

e Current estimation error criteria, error must be
bigger than a threshold:

e(k) = y(k) - (k) 2 Ey
® Novelty criteria, the nearest center distance must be
bigger than a threshold:

infle(k) . (0)] 2 £

o Windowed mean error criteria, windowed mead error
must be bigger than a threshold:

%Z[Y(k‘T*'i)—}"(k—Tﬂ)]ZE;

To avoid an excessive increase of the Network size a
pruning strategy can also be applied. When this happens
the network is called Minimal RAN (MRAN) [12]. In all
these RBF based networks, the learning algorithm is a
modified steepest descent rule (as in the ADALINE). In
[13] it has been shown that the employment of this
algorithm guarantees the ultimate boundedness of both
the estimation error and weights for a fully tuned MRAN,
earlier resuits are available for generic RBF networks.

Fully Tuned Extended Minimal Resource Allocation
Network RBF (EMRAN-RBF): This Neural Network is
a powerful variation of the standard MRAN [12]. The
growing and pruning mechanisms remains unchanged,
while the parameters are updated following a “winner
takes it all” strategy. In practice only the parameters of
the most activated neuron are updated, while all the other
are unchanged. This strategy implies a significant
reduction of the number of parameters to be updated
online, and for this reason it is particularly suitable for
online applications. In [13] it was shown that the EMRAN
algorithm implies just small performance degradation

with respect to the MRAN.
AN R EMRAN-RDF

RRF NN REFNNQ ROFHN S MRAN-RSF (nmpla)
. _|
. H—
. i
i

ADALINE-NN EBP NN EBP HH (mavan) RoS EXTENDED AWF

Fig. 6 — Adaptive Neural Networks Library

S. SIMULATION EXAMPLE

In this paragraph the comparative results of SFDIA
capabilities provided by different NN estimators are
shown. The system is a detailed 6DOF non-linear model
of the De Havilland DHC-2 “Beaver” Aircraft. The
SFDIA procedure is applied to the estimation of the three
gyro rates p(k),q(k),r(k). Due to space constraint issues,
only the results for a failure of the pitch rate sensor g(k)
are reported; similar results were also achieved for the roli
and yaw rate sensors. The numerical simulation starts at
nominal cruise conditions and an on-line learning process
of 6000 sec of flight is run, allowing the NN to achieve a
substantial amount of learning. A new set of maneuvers
lasting 2000 sec is then flown with the failure of one the
sensor occurring at exactly T=1098 s. Different soft and
hard failure were injected in the system during the

simulation. Since we assumed no physical redundancy of
the sensor, as soon as a fault has been detected, the faulty
measure qqk) is replaced by the estimation g,(k) in the
feedback control loop. Three different NN architectures
were tested. In particular we compared the performance
achieved by ADALINE+MRAN, EMRAN and MLP-EBP

(of comparable complexity) in presence of biasing signals -

of different amplitude and rise time added to the nominal
values. The comparison of the performance provided by
the three closed loop SFDIA schemes is quantified by
evaluating classical SFDIA indicators.

Specifically, to evaluate the goodness of the
accommodation system, the following parameters are
considered:

MABE(D) =3 |(6) - 50

VAEE(k) = 7:/-; (k) - 5(k)| - MAEE (k)Y

where MAEE(k) and VAEE(k) represent respectively the

mean and variance of the absolute estimation error. The

integer ‘N’ represents the number of time steps from the

instant when the failure of sensor is declared to the end of

the flight (simulation).

To evaluate the goodness of the detection/identification

system, the detection ratio S2/S1 between the main peak

of the filtered residual signal during the failure transient

(1096 <t < 1120) and the peek of the filtered residual

before failure (0 < t < 1090) is considered. This ratio

quantifies the detectability provided by the scheme.

Furthermore, the time percentage in which LE=0 before

the true-fault detection, is reported to quantify the false

detection (false alarm) rate, and the time percentage in

which AE=0 before the true-fault declaration, is reported

to quantify the false accommodation rate.

All these results are reported in table I, where for each

type of failure the following parameters are shown:

¢ The amplitude and the rise time of the biasing signal,
the instant in which the fault is detected (Tdetect)

o The indexes MAEE(1), VAEE(1), MAEE(2), VAEE(2)
evaluated prior (1) and after (2) the fault is detected.

¢ The Ratio S2/S1.

¢ The false detection rate and the false accommodation
rates.

o The total simulation time. This is a parameter to
evaluate the relative computational burden of the
different NN architectures and implementations.

Subscript “1” before failure; subscript 2 after falure. e
Amplitide Rise Time Tdetoct MAEE 1 VAEE 1 MAEE 2 WVAEE 2 "SUS2 Falge Det Faise AcG SuTme |

.ADAUNE-#—MRAN

4124

0 4045
0478
0 40738
0 4612
0467

o 4T
0272 0w

103 10046 036421 Q15701 0360078 0.173011: T20080; 001507 O 45%
257 T4 0001] 0:364804: 0.156085: 0.360873 0.175641; B.4R228 026086

0
K] 4 1000.7; 03625271 0157196 0675671 0.172615! 29010 0.32627, 0

25 0.3-” 9081 0.363867 0.157m amsmm ‘6ABUS 027231

e MLP-EBPA e
25005 sas@ ‘07254 0123787, (4201277 0.1608681 AZ6115 70016261 1571744 4253
. 0 AL

25 T4 G005 034 01200711 (142005 0.1%! M1 7.066000: 15717441 453811

i 4 -Mﬁ " Q0T 0124008 Q1RY 0.192255' 1.81221: 7146301, 161306 45285,

Table 1: SFDIA Performance Parameters

As expected the sixth failure is the most difficult do detect
by any NNs. The best detectability performance, despite
the simplicity of the learning algorithm, was given by the
EMRAN, which performs slightly better of the
ADALIN+MRAN; on the contrary, the MLP-EBP after
the accommodation causes the instability of the closed
loop system, testifying, in this case, the non accurate
online mapping achieved by this architecture. Moreover,
as a general trend, it is clear that the quality of the
approximation is crucial in allowing a good performance
in term of fault detectability, low false detection and
accommodation rates, and mostly important, stability (and
performance) of the accommodated closed loop.

6. CONCLUSIONS

In this paper an aircraft SFDIA analysis tool was
discussed. The tool allows the investigation of the
interactions between the closed loop aircraft dynamics
and the dynamics of the SFDIA system. A clear
understanding of this interaction is of great importance
since an incorrect choice of the internal SFDIA
approximation architecture could result in the instability
of the feedback control system. This aspect has been
clearly pointed out by means of a simulation example in
which instability occurs in the accommodation phase even
if the sensor failure is correctly and promptly detected and
isolated. In this respect, the main feature of the tool is the
possibility of testing and comparing in closed loop the
capabilities of SFDIA schemes exploiting different kinds
of Neural Networks as nonlinear approximators. This
capability is a consequence of the extensive modularity of
the whole simulation tool, and allows an easy change of
aircraft dynamics and feedback control law as well as NN
estimators and SFDIA scheme.

ACKNOWLEDGEMENT

Partial support for the 1% author has been provided by
grants from the Italian National Research Council (CNR).
Partial support for the 2™ and 3" author has been
provided through the NASA Ames No. NAG 2-1158 and
the DoD/EPSCoR Air Force grant No. F49620-98-1-0136
respectively.

REFERENCES

{11 R. J. Patton, P. M. Frank, R. N. Clark, Fault
diagnosis in dynamic systems, theory and applications
(Englewood CIliff, NJ, Prentice-Hall, 1989).

[2] H. Baruh, K. Choe, Sensor-Failure Detection Method
for Flexible Structures, A/AA Journal of Guidance,
Control, and Dynamics, 1987, Vol. 10, no 5, 474-482.

{3] Kerr, T.H., False Alarm and Correct Detection
Probabilities over a Time Interval for Restricted Classes
of Failure Detection Algorithms, /EEE Transactions of
Information Theory, 1982, IT-28, No. 4, pp. 619-631.

[4] Ha, CM., Wei, Y.P., Bessolo, J.A., Reconfigurable
Aircraft Flight Control System Via Neural Networks,
Proceedings of the 1992 Aerospace Design Conference,
AIAA Paper 92-1075, Irvine, Ca, Feb. 1992,

[S]1 M. R. Napolitano, Y. An, B. Seanor, A fault tolerant
flight control system for sensor and actuator failure using
neural networks, 4ircraft Design, 2000, vol. 3, pp. 103-
128.

[6] Rauw, M.O.: 4 Simulink Environment for Flight
Dynamics and Control analysis - Application to the DHC-
2 “Beaver” (MSc-thesis, Delft University of Technology,
Faculty of Aerospace Engineering, Delft, The
Netherlands, 1993).

{71 N. Halyo, H. Direskeneli, B. Taylor, 4 Stochastic
Optimal Feedforward & Feedback Control Methodology
Jor Superagility (NASA CR 4471, November 1992).

[8] M. L. Fravolini, G. Campa, M. R. Napolitano,
Minimal Resource Allocating Networks for Aircraft
SFDIA, [EEE Int. Conference on Advanced Intelligent
Mechatronics 2001, Como, Italy, July 2001.

[9] M. Polycarpou, On-Line Approximators for
Nonlinear System Identification: A Unified Approach,
Control and Dynamic Systems Series, Volume 7, Neural
Network Systems Techniques and Applications (Academic
Press, January 1998).

[10]D. S. Broomhead, D. Lowe, Multivariable Functional
interpolation and Adaptive Networks, Complex systems,
Vol. 2 pp. 321-355, 1988.

{11]J. C. Platt, A Resource Allocation Network for
Function Interpolation, Neural Computation 3(2), pp.
213--225, 1991.

[12]Y. Lu, N. Sundararajan, P. Saratchandran, Analysis
of Minimal Radial Basis Function Network Algorithm for
Real-time identification of nonlinear dynamic systems,
IEEE. Proc. Contr. Theory and application, Vol. 4, no.
147, pp. 476, 2000.

[13]E. B. Kosmatopulos, M. M. Polycarpou, M. A.
Christodoulou, P. A. Joannou, High-order neural Network
structures for identification of dynamical systems, /EEE
Trans. Neural Networks, vol. 6, no. 2, 1995.

[14]Li. Yan, N. Sundararajan, P. Saratchandran,
Dynamically Structured Radial basis Function Neural
Networks for robust aircraft flight control, Proc.
American Control Conference, pp. 3501-3505, Chicago,
2000

Appendix A.2

Authors:
Napolitano, M.R., Younghwan A., Seanor, B.

Title:

“A Fault Tolerant Flight Control Systems for Sensor and Actuator Failures Using
Neural Networks”

Aircraft Design Journal, Volume 3, 2000, pg. 103-128.

AIRCRAFT
DESIGN

www-elsevier.com/locate/airdes

. PERGAMON Aircraft Design 3 (2000) 103-128

A fault tolerant flight control system for sensor and
actuator failures using neural networks™

Marcello R. Napolitano*, Younghwan An, Brad A. Seanor

Department of Mechanical and Aerospace Engineering, West Virginia University, P.O. Box 6106, Morgantown,
WV 26506/6106, USA

Abstract

In recent years neural networks have been proposed for identification and control of linear and non-linear
dynamic systems. This paper describes the performance of a neural network-based fault-tolerant system
within a flight control system. This fault-tolerant flight control system integrates sensor and actuator failure
detection, identification, and accommodation (SFDIA and AFDIA). The first task is achieved by incorporat-
ing a main neural network (MNN) and a set of n decentralized neural networks (DNNs) to create a system
with n sensors which has the ability to detect a wide variety of sensor failures. The second scheme implements

. the same main neural network integrated with three neural network controllers. The contribution of this
paper focuses on enhancements of the SFDIA scheme to allow the handling of soft failures as well as
addressing the issue of integrating the SFDIA and the AFDIA schemes without degradation of performance
in terms of false alarm rates and incorrect failure identification. The resuits of the simulation with different
actuator and sensor failures with a non-linear aircraft model are presented and discussed. © 2000 Elsevier
Science Ltd. All rights reserved.

1. Introduction

The relatively low procurement of high-performance military aircraft along with the cancellation
of plans for building new aircraft has renewed interest in fault-tolerant flight control systems with
capabilities for accommodating sensor and actuator failures. For military purposes it is clear that
such a feature can increase the chances of survivability following a control surface failure in a
combat scenario. For scientific applications, much emphasis has been placed on the design of

*Aviation Operation and Safety Center.
* Corresponding author. Tel.: 1-304-293-4111 ext 2346; fax: 1-304-293-6689.
E-mail address: napolit@cemr.wvu.edu (M.R. Napolitano).

1369-8869/00/% - see front matter ¢ 2000 Elsevier Science Ltd. All rights reserved.
PII: S1369-8869(00)00009-4

104 M.R. Napolitano et al. - Aircraft Design 3 (2000) 103-128

Nomenclature R right side
R rudder
a acceleration (ft/s?)
k discrete time index Acronyms
m pattern for the neural network input data ~ AFA actuator failure accommodation
p aircraft angular velocity around the AFDI actuator failure detection and
x body axis (roll rate), rad/s 1dentification
¢ aircraft angular velocity around the AFDIA actuator failure detection,
v body axis (pitch rate), rad/s identification. and accommodation
r aircraft angular velocity around the BPA back propagation algorithm
z body axis (yaw rate), rad/s DNN decentralized neural network
R auto- or cross-correlation function DQEE decentralized quadratic estimation
t time, s error
O neural network output EBPA extended back propagation
Y parameters to be estimated algorithm
FDI failure detection and identification
Greek letters MNN main neural network
% angle of attack, rad or deg MQEE main quadratic estimation error
fp angle of sideslip, rad or deg NNC neural network controller
0 pitch Euler angle, rad or deg OQEE output (of NN) quadratic
0 control surface deflection, rad or deg estimation error
¢ roll Euler angle, rad or deg PTBU (neural) parameters to be updated
Y yaw Euler angle, rad or deg (at each computational step)
SFA sensor failure accommodation
Subscripts SFDI sensor failure detection and
A aileron identification
E elevator SFDIA sensor failure detection,
L left side identification, and accommodation

fault-tolerant flight control systems for low weight and unmanned aerial vehicles (UAVs) used
for remote sensing purposes. In general, a full-fault-tolerant flight control system needs to
perform:

e Sensor failure detection, identification, and accommodation (SFDIA) [1-4];
e Actuator failure detection, identification, and accommodation (AFDIA) [5-10].

Furthermore, the SFDIA task can be divided into:

e sensor failure detection, identification (SFDI), which monitors the degree of deterioration in the
accuracy of the sensors.

e sensor failure accommodation (SFA), which replaces the faulty sensor with an appropriate
estimation.

M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128 105

Similarly, the AFDIA task can be divided into:

e actuator failure detection and identification (AFDI), which detects significant abnormalities and
searches for the cause or for a set of probable causes;

e actuator failure accommodation (AFA), which determines on-line what actions should be taken
to recover the impaired aircraft. -

Sensor failure detection and identification (SFDI) is an important issue, particularly when the
measurements from a failed sensor are used in the feedback loop of a control law. Since the aircraft
control laws need sensor feedback to set the current dynamic state of the airplane, even slight
sensor inaccuracies, if left undetected and unaccommodated for, can lead to closed-loop instability,
potentially leading to unrecoverable flight conditions. For SFA purposes, most of today’s high-
performance military aircraft as well as commercial jetliners implement a triple physical redund-
ancy in their sensor capabilities. However, when reduced complexity, lower cost, and weight
optimization are of concern, an analytical sensor redundancy approach is more appealing.

In terms of the AFDIA problem, an actuator failure may imply a locked surface, a missing part of
the control surface, or a combination of both. In increasing order of severity, an actuator failure
alters trim conditions and induces a dynamic coupling followed by deterioration of dynamic
stability potentially leading to unrecoverable flight conditions. The final objective of the AFDIA is
to achieve, in increasing order of importance, a lower failure-induced handling qualities degrada-
tion rate, a lower mission abort rate, and a lower aircraft loss rate.

Most of the early research work on the actuator failure detection problem was based on the
application of Kalman filter techniques [11-16]. These FDI techniques, such as Generalized
Likelihood Ratio and Multiple-Model Kalman Filtering, perform a continuous monitoring of the
measurements from the sensors. At nominal conditions, these signals follow known patterns with
a certain degree of uncertainty due to system and measurement noises. However, when sensor or
actuator failures occur, the measurements deviate from the predictable trajectories computed
on-line or off-line from state estimation schemes. The main problems associated with the applica-
tion of these failure detection schemes are their suitability only for linear time invariant systems
and their applicability only when the system model is identical to the filter or observer model
and/or with a high signal-to-noise ratio. As an alternative approach, the implementation of Neural
Networks (NNs) to the SFDIA and AFDIA problems has lately been proposed and developed in
recent years [3,5-7,10]. A NN-based SFDIA has also been simulated off-line with actual aircraft
flight data [4].

Within a more general overview, in recent years NNs have been proposed for identification and
control of linear and non-linear dynamic systems [17-22]. An aircraft system in certain phases of
its flight envelope can be considered a time-varying, non-linear system with measurement and
system noises. Therefore, the control of such a system can be attempted with an adaptive scheme.
For NN applicability to adaptive control systems, the following properties are important
[3,20-23]:

® Learning and adaptation: NNs can be trained using past recorded or simulated data (off-line
training) or current data (on-line learning).

® Applicability to non-linear systems: The applicability of NNs to non-linear systems originates
from their demonstrated mapping capabilities [23].

106 M.R. Napolitano et al. | Aircraft Design 3 (2000) 103128

e Application to multivariable systems: NNs are multi-input, multi-output (MIMO) entities and
this, naturally, leads to their application to multivariable systems.

® Parallel distributed processing and hardware implementation: NNs have an inherent parallel
architecture which, naturally, leads to high-speed parallel hardware implementations.

It is clear that these properties of NNs are very appealing for the purpose of providing
fault-tolerance capabilities in a flight control system following sensor and/or actuator failures.
A critical design choice in the use of NNs for both estimation and control purpose is on-line
learning vs. off-line learning. Off-line learning implies that the NNs have a “frozen” numerical
architecture and do not take advantage of the additional learning, which can be provided
by on-line data. With on-line learning neural networks different issues are of concern. Among
these issues there is the necessary amount of time required to achieve an acceptable learning
level, the difference between localized and global learning, and the level of complexity of the
NN architecture. Both these problems are related to the learning algorithm. Therefore, the
performance and the acceptability of an on-line learning NNs depend on the performance of
its training algorithm. In this paper we will consider Multi-Layer Perceptron NNs (MLP NNs or
simply NNs).

MLP NNs have been used as estimators and/or controllers to model and/or control complex
non-linear systems due to their approximation and adaptation capabilities. Within a larger picture
MLP NNs can be considered as a class of approximators. Other types of approximators include
polynomials, spline functions, rational functions, as well as a different class of NNs, known as
radial basis function (RBF NNs). An important effort toward creating a unified approximation
theory was recently undertaken [24,25]. The critical need for such a unified approach can be
understood if one considers the virtually infinite number of degrees of freedom in the selection of
the approximation structure. Furthermore, a systematic procedure for creating non-linear approxi-
mators as well as stable learning schemes using Lyapunov’s theory was introduced.

To date, for MLP NNs the Back-Propagation algorithm (BPA), a gradient-based optimization
method, has been widely used as a training algorithm for the NN architecture. However, limited
learning speed and local minimum points are well-known drawbacks of the BPA [19]. Different
researchers have proposed several algorithms and/or procedures for dealing with these problems.
The approach used by the authors consists in using a heterogeneous network, meaning that each
neuron in the hidden and output layers of the NN has the capability of updating the output range
(upper and lower bounds U, L) and the slope of the sigmoid activation function (T) as given

S ULT) = —7 + L (1)

1+

where “x” is the same argument as in the BPA sigmoid activation function. The relative learning
algorithm has been named the Extended Back-Propagation algorithm (EBPA) and has demon-
strated substantial performance improvements with respect to the BPA in terms of accuracy and
learning speed [26].

This paper is very application oriented and focuses on outlining the improvements of a modified
SFDIA scheme (with respect to the original scheme introduced by the first author) as well as
addressing the problem of the integration between the SFDIA and the AFDIA schemes. The
second is a very original topic in the fault-tolerance literature. It should also be underlined that

M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128 107

different neural paradigms and/or algorithms could be used within the SFDIA and the AFDIA
schemes without any loss of generality.

It should be emphasized that this paper does not deal with a critical problem of NN-based
fault-tolerant control laws, that is the validation and certification (V&C) of NN-based control laws.
The V&C for these neural schemes must start from a clear definition of the SFDIA and AFDIA
system requirements followed by the introduction of ad-hoc analytical tools for assessing the
closed-loop stability of the system leading to the final system certification. These issues are not
trivial and their resolution is a critical phase prior to the actual implementation of artificial
intelligence fault-tolerant control schemes on on-board computers [27-30].

The paper is organized as follows: the next sections review the SFDIA and AFDIA schemes
followed by a section describing the results of the simulations for sensor and actuator failures. The
final section summarizes the paper.

2. Neural network-based sensor failure detection, identification, and accommodation

Using on-line learning NN estimators, the SFDIA problem can be approached by introducing
multiple feed-forward NNs trained on-line with the EBPA. Particularly, the scheme consists of
a main NN (MNN) and a set of n decentralized NNs (DNNs), where n is the number of the sensors
in the flight control system without physical redundancy. The outputs of the MNN are the
estimates of the same parameters measured by the n sensors at time “k”, using measurements from
time instant “k — 1” to “k — m”; these estimates are compared with the actual measurements at
time “k”. For the ith of the n DNNS, the output is the estimate of the measurement of the ith sensor,
that is, the prediction of the state at time “k”, using measurements from “k — 1” to “k — m” to be
compared with the actual measurement at time “k”. The inputs to the ith DNN are the measure-
ments from any number to up “n — 1 sensors, in other words, all the n sensors excluding the ith one.

The performance of this NN-based SFDIA scheme were compared in a previous study with the
performance of an identical scheme with Kalman filters in lieu of the MNN and the DNNs [31].
This comparison showed the advantages of the on-line learning by the NN-SFDIA scheme vs. the
robustness of the Kalman Filter SFDIA scheme for modeling discrepancies between the actual
system and the filter model; additionally the study showed a similar level of computational effort
for on-line applications.

For SFD purposes, when a quadratic estimation error parameter from the MNN exceeds some
predefined threshold at a certain time instant, the scheme deduces that a sensor failure may be
occurring or has already occurred. Following the positive sensor failure detection, the learning for
each DNN is halted; then, a quadratic estimation error parameter from the DNN s exceeding, at the
same time instant, another threshold provides the identification. For the accommodation phase,
the ith DNN output is used to replace the measurement from the faulty sensor; ith DNN output
is also used as input to the MNN for the purpose of allowing the MNN to provide detection
capabilities until the end of the flight. This output is also passed to all other DNNs using the ith
sensor as an input parameter. This “double trigger” approach using both MNN and DNNs has the
purpose of reducing the rate of false alarms in the FDI process. Several options can be added to this
scheme to add robustness for noisy measurements and/or intermittent sensor failures. For example,
alower and a higher threshold level can be introduced for the DNNGs. If the estimation error for the

108 M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128

ith DNN exceeds the lower threshold once, the status of the corresponding ith sensor is declared
“suspect”™ and the numerical architecture of the ith DNN is not updated. Should this status
continue for a certain number of time instants and/or the estimation error in successive time
instants exceeds the higher threshold, then the sensor is declared failed and is, therefore, replaced by
the output from the ith DNN. Fig. 1 shows a block diagram of the SFDIA process.

For simplicity purposes, let us consider failures only for the pitchi rate. the roll ratc, and the yaw
rate gyros. As for any other FDIA approach, the following distinct capabilitics arc critical:

e failure detectability and false alarm rate for SFDI purposes;
e cstimation error for SFA purposes.

The following quadratic parameter is used for sensor failure detection (SFD) purposes:

] Num. of DNNs

MQEE(k) = > _Z (Yi(k) = Oimnn(k))?
1 5 . .
= 5 [(p(K) = bann (k)™ + (a(k) = Gunn(k)? + (r(k) — ()] (2)

The sensor failure identification (SFI) can instead be achieved by monitoring the absolute value of
the estimation error of each DNN, defined as

DQEE, (k) = 4(x(k) — %(k))> where x = p,q,r. (3)

For sensor failure accommodation (SFA) purposes, the following classic parameters for the
estimation error are instead evaluated.

DAEE, :%) (x(k) — %K), (4)
DVEE, =% i [(x(k) — %(k)) — DAEE,]?> where x = p,q,r, (5)

where DAEE and DVEE represent the DNN estimation error mean and variance respectively. The
“N” refers to the number of time steps from the instant when failure of sensor is declared to the end
of the simulation.

In the case of a step-type sensor failure, the desirable detection capabilities are provided by the
peak value of the MQEE parameter regardless of bias magnitude. However, in the case of soft
sensor failures, particularly for ramp-type sensor failures, the MQEE-criterion has not shown
reliable detection capabilities [4]. Therefore, a modification has been introduced to ensure
desirable performance under conditions resulting from any type of failures. This modified SFDIA
scheme makes use of a different NN quadratic estimation error defined by

1 Num. of DNNs

OQEE(k) = 5 ._Zl (Oi.MNN(k) - Oi,DNN(k))2
= %[(i)MNN(k) — Ponn(k)? + (Gun(k) — Gonn(k)? + (Fann(k) — Fonn(k))?], (6)

where ppnn, donn, and Fpnn are the estimates of p, ¢, and r from the respective DNNs.

M.R. Napolitano et al. [Aircraft Design 3 (2000) 103~128

Monitoring Main Quadratic Estimation Error (QEE), Output
QEE, and Decentralized QEEs

S x-sensor'
current status
"fail” ?

No

Sensor Failure
Detection

MQEE > Thresh_M
or
OQEE > Thresh_O

number of times

Monitoring
intermittent senso

r

failure

Send x-DNN

No—»{ estimate to flight

computer

Yes

¥

x-DNN resumes learning
Send x-sensor data to
flight computer

N
NO

Observation
phase Yes

x-DNN stops learning
Send x-DNN estimate to flight computer in
place of x-sensor

2

Send x-sensor data
to flight computer

I Auto and cross correlation analysis]-—Positive—»l AFl andAFA

|
Negative

Sensor Failure
Identification

DQEE, > Thresh #1
(number of times)
or
DQEE, > Thresh#2

Sensor Failure
Accommodation Yes

End observation period
Declare failure for x-sensor
Send x-DNN estimate to flight computer
in place of x-sensor

False Alarm

End observation period

x-DNN resumes learning

Send x-sensor to flight
computer

Fig. 1. Block diagram of the SFDIA scheme.

109

The need for the use of this new parameter for SFD purposes is better described by an analysis
of a typical sensor failure. For example, when a pitch rate gyro fails, the three parameters
q(k), gunn(k), and gpnn(k) within the “MQEE” and “OQEE?” are considered. At nominal conditions
gunn(k) and gpnn(k) are estimated by the MNN and g-DNN, respectively, to emulate the actual
pitch rate gyro. In the event of a ramp-type g-gyro failure, the gynn tends to resemble the corrupted

110 M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128

Table 1
Architecture of the NNs for the SFDIA scheme

Parameter MNN g-DNN p-DNN r-DNN

Input data p,q.1,¢,0,08,0a, O o, Uy, Ay, W P i, Oa, Ok fay. 0., 04,0

Input data pattern 5 5 5 5

Total no. of inputs 40 20 30 30

No. of hidden layer 1 1 1 1

No. of neurons in HL 25 20 30 18

No. of outputs 3(p,g.1) 1(9) 1(p) 1(7)

Learning rates® 0.1 0.01 0.01 0.01
(0.1) (0.0004) (0.0004) (0.001)

Momentum cocfficients® 0.05 0.005 0.005 0.005
(0.05) (0.0002) (0.0002) (0.0005)

PTBU" 1187 504 1054 616

*Upper value is for pre-training, (lower) value is for on-line learning.
PNumber of parameters to be updated at each iteration for the NN in the on-line learning mode.

signals from the gyro. In fact, since the pitch rate gyro is included as the input parameter in MNN
(see Table 1), the MNN architecture is updated with the failed g-gyro values during the on-line
learning. As a result, MQEE does not provide an accurate detection because the difference between
q(k) and gunn(k) is relatively small despite the gyro failure. However, the output of the g-DNN
(gpnn (k) in Eg. (6) follows the nominal “g” value (that is the value as it would be without a failure)
relatively well despite the sensor failure. This is because the g-DNN does not receive, as input data,
measurements from the faulty sensor, as shown in Table 1. The discrepancy between gynny and
gpnw in Eq. (6) causes, therefore, the peak of ‘OQEE’. This problem does not occur for the step-type
sensor failures. In fact, for these failures gunn(k) is not consistent with the measurement from the
failed sensor, which induces therefore a peak for MQEE.

In general, it can be concluded that the MQEE provides better performance for step-type sensor
failures whereas the OQEE performs better for ramp-type of sensor failures. The results of
comparative studies for these detection schemes are shown in one of the following sections. It is
concluded that a combined detection scheme using both “MQEE” and “OQEE” provides more
reliable detection capability for the SFDIA for any type of failures.

3. Neural network-based actuator failure detection, identification, and accommodation

The occurrence of any actuator failure also implies that the parameter ‘MQEE’ defined above
exceeds a selected threshold. Thus, the actuator failure detection (AFD) can be achieved by
spotting substantial changes in the aircraft angular velocities following any type of actuator failure.
Next, the actuator failure identification (AFI) can be performed by analyzing specific cross-
correlation functions. In general, for two random processes Y(k) and X(k), a cross-correlation
function is defined by

Ryx(n) = E[Y(K)X(k + n)]. (7

M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128 111

For AFI purposes the cross-correlation functions R, R,, and R,, are used, taking advantage of
the fact that any type of actuator failure on any aircraft control surface involves a loss of symmetry.
This loss is then followed by a dynamic coupling between longitudinal and lateral-directional
aircraft dynamics. Furthermore, the auto-correlation function, R,,, has shown capabilities as
a useful identification tool in the event of a rudder actuator failure.

Following a positive AFD and AFI, the immediate objective is to regain equilibrium and to
compensate for the pitching, rolling, and yawing moments induced by the failure. Toward this goal,
three separate NN controllers are introduced: a NN pitch controller, a NN roll controller, and
a NN yaw controller.

The output of the NN pitch controller (NNC pitch) is the compensating deflection for the
remaining healthy elevator (elevator failure case) or the symmetric elevators (aileron and/or rudder
failure case). The on-line learning for the NN pitch controller is initiated as the simulation starts.
Under nominal conditions, the controller is trained to emulate the actual control deflections for the
symmetric elevators. Therefore, it minimizes the cost function

intChnom = (5HL.R - SHL.R) (8)

Following a positive AFD and AFI showing the need for a longitudinal AFA, the on-line
learning NN pitch controller switches its target to minimize the cost function

intchAFA = kl(q - qref) + k2 (0 - Gref) + k3 (an — ay,,)a (9)

where grer = 0, Orer = Oyim, and @, = 1.

It should be noted that this cost function resembles a controller with a PID error formulation. It
should also be mentioned that the on-line learning at nominal conditions (that is with the AFDIA
scheme inactive) has no physical meaning; in fact, the NN pitch controller is just “emulating”
control deflections at nominal conditions. However, this procedure has shown the benefit of
improving the transient response by having the NN output within the same order of magnitude of
the NN output necessary when the AFA process is turned on following a positive AFD and AFL.

Within the AFDIA scheme the NN roll and yaw controllers operate in a similar fashion. Under
nominal conditions, these controllers learn to replicate the actual control deflections for the
ailerons and the rudder by minimizing the cost functions

Jra,, = (Oa,, — O,) (10)
Jyaw.., = (Or — Og). (11)

Following positive AFD and AFI, the on-line learning NN roll and yaw controllers switch their
targets to minimize the cost functions

JrollAFA = k4(p - pref) + k5(¢ - (:bref)s (12)
Jyaw,m = k6(r - rref)s (13)

where the pres = @rer = rrer = 0 at trim conditions. Fig. 2 shows a block diagram of the' AFDIA
process while Fig. 3 shows a combined block diagram of the SFDIA and AFDIA schemes.

112 M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128

v

Flight Control System
Sensors Data

Systolic Systolic
memory memory
locations : locations :

'k-1" to 'k-m’ 'k-1' to 'k-N'

No MNN inputs

Update
R . (k), R (k), R_(Kk),
pq Rn (k) q

Lad

MNN
(for SFD and AFD)

Estimates of 'p’,

'q’,'r at time 'k’ Update
'Measuremenu of Sum lqul. Sum lRp,[
p','q','r at time 'k’ Sum|R_|, Sum |R |

over N+1 steps

Yes—*
R, R, Ry, R,

Set 'k=k+1'

N
egatve threshold analysis
False Alarm No I
Set 'k=k+1' Positive
Yes
4
SFA Actuator Failure Identificatikon
through [R_I, IRl IR |, IR}

Actuator Failure Accommodation
Pitch NNC - Roll NNC - Yaw NNC

Fig. 2. Block diagram of the AFIDA scheme.

4. Simulation of the SFDIA and the AFDIA schemes

The mathematical model used for this study is the model of a B747-200 aircraft. Using
aerodynamic and thrust data, a simulation code was developed [32]. This model features non-
linear dynamics, linearized aerodynamics and includes system and measurement noise. The system
noise is modeled as zero mean, white, Gaussian gust disturbance on the angle of attack and on the
side-slip angle. The sensor noise is also assumed to be Gaussian and white. The standard deviations

M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128 113

Actual values of
p, q r at k'
*
EBP p q rat'k
=~ . SFDIA-ON .
DNN#1 stops learning Online leaming * - -1 AFDIA-ON
g-DNN replaces q for SFA MNN NN controller outputs replaces
Estimates of p, q, 1 maneuvers for AFA
QOO ORERE
= O S :
Input Parameters - :
FHOM THite k-1 66'K-m : ;
Actual value | Actual value Actual value'’ s :
of q at 'k of p at ' of r at 'k' [q-cosl function I i[p—costfunctionl |r-oostmncﬁon I
. eseereneeas l 5 : :
[Eeea] [g at'k' [[E8PA] [EBPA 1@_@ o8 atw] [EBPA (5 arwe} o
On-line learning On-line learning On-line tearning On-line learning 11| On-line learning On-line leaming '
DNN #1 DNN #2 DNN #3 Pitch NNC | :i| Roll NNC Yaw NNC |
T T 111 ; ;
(@066 (OO0 6 GO @OFREOE O &
nput Parameters P e R e H
From Time k-1 to k-m From Time k-1 to k-m Fr::‘unma;akr:etor:ﬂ
) I (A
pitch rate gyro roll rate gyro yaw r]ata gyro

Fig. 3. Integration of SFDIA & AFDIA structure with failures of pitch rate gyro and right elevator failure.

Table 2

System noise standard deviations

Parameter Standard deviation
Xgust ’ 0.1°

ﬁgust 0.10

for the system and sensor noise are given in Tables 2 and 3 [11]. The primary control surfaces
consist of two differential elevators, two differential ailerons, and rudder.

As stated in the previous section, the SFDIA scheme is simulated only for failures of the pitch,
roll, and yaw rate gyros. Therefore, the NN-based SFDIA scheme uses one main NN (MNN) with
three decentralized NNs (DNNs). The architectures for the MNN and the DNNs are shown in
Table 1. Note that input parameters of g-DNN do not include pitch rate measurements. Similarly,
the p-DNN and the »-DNN do not use “p” and “r” as input parameters, respectively. The AFDIA

scheme is simulated for failures of the actuators of elevators, ailerons, and rudder. The AFDIA

scheme consists of three NN controllers and shares the MNN with the SFDIA as shown in Table 4.

114 M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128

Table 3
Sensor noise standard deviations

Parameter Standard deviation
Airspeed indicator 111ft/s
Roll rate gyro 0.14%s ~
Pitch rate gyro 0.14°/s
Yaw rate gyro 0.14 /s
Longitudinal accelerometer 0.98 ft/s?
Lateral accelerometer 0.98 ft/s?
Directional accelerometer 0.98 ft/s?
Attitude pitch gyro 0.57°
Attitude roll gyro 0.57¢
Attitude yaw gyro 0.57°
Altitude rate indicator 0.251t/s
Altitude indicator 10ft
Angle of attack 0.1°
Sideslip angle 0.1°

A generic sensor failure can be modeled as

xfailure,i = Xnom,i = pn;, (14)

where n; is the direction vector for the ith faulty sensor, and p is the magnitude of the failure which
can be positive or negative

e for step-type sensor failures, n; = 1,
e for ramp-type sensor failures,

[— tgy

—, I S <1,
n; ={ 2 — g1

1, L2t

where t;, and t;, indicate the initial and final time instant of ramp-type sensor failure, respectively.
The different types of sensor failures considered in this study based on the above formula are
represented by:

Type # I: large sudden bias (2.5°/s);

Type #2: small sudden bias (1.0°/s);

Type # 3: large drifting bias (2.5°/s) with fast transient period (0.3 s),
Type #4: small drifting bias (1.0°/s) with fast transient period (0.3 s);
Type #5: large drifting bias (2.5°/s) with slow transient period (4s);

Type # 6: small drifting bias (1.0°/s) with slow transient period (4s).

The maximum control surface deflections in the simulation code are + 15° for the elevators and
+ 20° for the ailerons and the rudder. The code also models the actuation rate for each of the

M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128 115

Table 4
Architecture of the NNs for the AFDIA scheme

Parameter MNN Pitch NC Roll NC Yaw NC
Input data P, g, 1, ,0,08,04,0r q,0, o P, d, B, 04 1D, B¢, Or
Input data pattern 5 2 . 3 3

Total no. of inputs 40 6 12 15

No. of hidden layer 1 1 1 1

No. of neurons in HL 25 20 20 20

No. of outputs 3(p, 4, #) 1(0gwry) 10awr) 1(0r)
Learning rates 0.1 0.2 04 0.5
Momentum coefficients 0.05 0.1 0.1 0.3

PTBU 1187 224 344 404

control surfaces with a maximum deflection rate of + 20°/s. The actuator failures are assumed to
occur randomly during high-speed cruise conditions. The considered actuator failures are given by:

Case # I: stuck R/L elevator at trimmed/untrimmed deflections without missing surface;
Case # 2: stuck R/L elevator at trimmed/untrimmed deflections with missing surface;
Case # 3: stuck R/L aileron at trimmed/untrimmed deflections without missing surface;
Case #4: stuck R/L aileron at trimmed/untrimmed deflections with missing surface;
Case #5: stuck rudder at trimmed/untrimmed deflection without missing surface;

Case # 6: stuck rudder at trimmed/untrimmed deflection with missing surface.

It is important to note that the mathematical modeling of the actuator failures in the event of
a missing part of the control surface is derived through a set of closed-form expressions for the
non-dimensional stability and control derivatives. These expressions are functions of the normal
force coefficient of the control surface whose actuator is assumed to have failed [7,10].

The numerical simulation starts at typical cruise conditions, defined by an altitude of 40,000 ft
and airspeed of 871ft/s. An on-line learning process is simulated following 30,000s of off-line
training. A maneuver lasting 100 s is then flown for each rate gyro failure case with a sensor failure
occurring at exactly 50s. The results of the comparative studies between two detection parameters
for the g, p, and r rate gyro failures are shown in Tables 5 and 6.

From Table 5, it can be seen that the MQEE-criterion provides a quicker detection than the
OQEE-criterion for the step-type sensor failure (Types # 1 and #2), regardless of the magnitude of
the step failure. Clearly, a larger bias induces a larger MNN error spike and the failure is declared
instantaneously at 50s for Type # 1 and around 50.48 s for Type # 2, depending on the size of the
rate gyro-DNN error. For the ramp-type failures (Types # 3-# 6), regardless of the magnitude
reached after the ramp, the MQEE-criterion does not trigger the failure detection. On the other
side, the OQEE-criterion provides a detection for the SFDIA scheme due to the difference of
output error between the MNN and the DNNs in Eq. (6). From the results presented in Table 5, the
MQEE-criterion seems more suitable for step-type sensor failures while the OQEE-criterion
performs better for ramp-type sensor failures. Thus, a “double detection trigger” (MQEE and/or
OQEE) can provide desirable performance for any sensor failure types.

116 M.R. Napolitano et al. | Aircraft Design 3 (2000) 103128

Table 5
Results of detection time between two detection parameters Rate gvro faiture is occurred at 1 = 505

Sensor failure type MQEE only OQEE only MQEE + OQEE

q p r q P r q p r
Type #1 50.00 50.00 50.00 50.02 50.02 50.04 50.00 50.00 50.00
Type #2 50.48 50.50 50.48 50.52 50.54 50.56 50.48 50.50 50.48
Type #3 ! * ¢ 50.26 50.24 50.44 50.26 50.24 50.44
Type #4 A a @ 50.80 50.78 51.00 50.80 50.78 51.00
Type #5 ¢ * . 52.10 51.66 51.56 52.10 51.66 51.56
Type #6 ! a ? 5456 53.26 5342 54.56 53.26 53.42

*No sensor failure declared.

Table 6
Results of comparative studies for estimation error

Sensor failure type MQEE only MQEE + OQEE
q p r q p r
Type #3 Mean — 0.805 — 1919 — 1.584 - 0.096 —0.104 - 0.023
Vari. 0.146 0.428 0.416 0.006 0.028 0.017
Type #4 Mean —0.363 - 0.790 —0.644 — 0.096 —0.108 - 0.027
Vari. 0.022 0.083 0.071 0.006 0.027 0.019
Type #5 Mean - 0.778 — 1.879 — 1.560 —0.103 - 0.134 — 0.036
Vari. 0.140 0.447 0.421 0.006 0.027 0.023
Type #6 Mean —0.356 —0.792 —0.646 —0.116 —0.176 —0.063
Vari. 0.022 0.072 0.069 0.010 0.027 0.017

Table 6 shows the result of a comparative study in terms of estimation error mean and variance
(Egs. (4) and (5)) between the “MQEE” and “OQEE” detection criteria. These values were
computed from the instant after the occurrence of the failure to the end of simulation. Since the first
criterion does not trigger a detection of failure for the small/large bias with slow/fast ramp, it may
not make sense to talk about estimation error mean and variation during the SFA for the case
when “MQEE” is used alone. However, it is important to recognize how much the estimators
deviate from the nominal sensor values when the first criterion does not provide a failure detection
or even a timely failure detection. The failure-declared time of the second criterion is used in the
comparative study. From the results presented in Table 6, the modified detection technique shows
improved performance in terms of estimation mean and variance.

M.R. Napolitano et al. | Aircrqf/t Design 3 (2000) 103-128 117

-t

M

——— MNN Error
----- MNN Threshold

°
@

¢ o
»
BEEasmaEs

Failure detection . =
using the 'MQEE' Roll rate gyro failure at t = 50 sec.

criterion Failure never declared.

Lol oty vabesa by

MQEE (deg”*2/sec*2)
o o
[N

PRSP FRRITUPER R N (RN ST I T i i

20 40 60 80 100

o
4

Quadratic Estimation Error

o

Time (sec)

Fig. 4. Plot of MNN error vs. time for sensor failure type #6.

- 2

g _ Out NN Error i
Wy s £ | Out NN Threshold _-
88) : Roll rate gyro failure at t = 50 sec 1
s £ Failure detection Failure declared at t = 53.26 sec 1
Ey 1 using the 'OQEE’ l -
20 criterion .
(1] E ...
Sw 05 3
sy]
[e h
b~ (s} ! X]
] \ A AP, bbbl

1 0 N . Y A g s 2 B DRI . o
(<] 0 20 40 60 80 100

Time (sec)

Fig. 5. Plot of Out NN error vs. time for sensor failure type #6.

—— p-DNN Error
Thresh#1

| Failure detection
Roli rate gyro failure using the 'MQEE'

att =50 sec. criterion
Failure never declared. |

p-DNN Error (deg”2/sec”2)

0 20 40 80 100

Time (sec) 60

Fig. 6. Plot of p-DNN error vs. time for sensor failure type #6.

Graphical results of this comparative study relative to Type # 6 failure are shown in Figs. 4-11.
This type of failure is selected because it is believed to be the worst case scenario. In fact, the “soft”
ramp-type failure may not degrade the system performance for the time after its occurrence, but if
left uncompensated, can lead the system to critical and, eventually, catastrophic situations if the
measurements from a faulty sensor are fed into the aircraft control laws. In Fig. 4, the MNN error

118 M.R. Napolitano et al. | Aircraft Design 3 (2000) 103~128
~ 3
S F — p-DNN Error
g 2.5 ol Thresh#1 Failure detection
o 2 B - using the 'OQEE’
> : Roll rate gyro failure criterion
T 15 | att =50 sec
5 a Failure declared 1) i
E 1 F att=53.26 sec AN . I Ll
z 05 b o 1L Ul L
2L
a O ‘ ’
0 20 40 . 60 80 100
Time (sec)
Fig. 7. Plot of p-DNN error vs. ime for sensor failure type #6.
6 |)) . -
S p-Nominal Failure detection R
Tab | p-Failure using the 'MQEE']
2 p-DNN criterion A
o 3
£: i
- 4
g 0 [N/’”-
t—g— 2 Roll rate gyro failure at t = 50 sec. o -
4 Failure never declared.

20 40 Time (sec) 60 80 100

Fig. 8. Plot of p-Nominal, p-Fail. and p-DNN vs. time for sensor failure type #6.

;_ -------- p-Nominal Faiture detection]
T a4 b |7 p-Failure using the 'OQEE’ . E
8 r P-DNN criterion ™ E
=] r .
i 2 [‘/'i
© F AN
é’ 2 F Roli rate gyro failure at t = 50 sec]

4t ! Failure declared at t = 53.26 sec ,
0 20 40 80 100

Time (sec) 60

Fig. 9. Plot of p-Nominal, p-Fail. and p-DNN vs. time for sensor failure type # 6.

does not exhibit a substantial detection spike although there were some DNN errors following the
sensor failure, as shown in Fig. 6. Instead, Figs. 5 and 7 show that the SFDI is successful for the roll
rate gyro following a sensor failure. In Fig. 5, the OQEE exceeded the predefined threshold during
the observation period after sensor failure. Following a successful sensor failure identification
(Fig. 7) and accommodation, the values of OQEE go back to low values as soon as the faulty roll
rate gyro sensor is replaced by the estimate from the p-DNN. Fig. 8 shows that there is some

decrease in the roll rate gyro-DNN’s estimation accuracy, since faulty measurements for “p” are

M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128 119

6 Eo| e - p-Nominal Failure detection]

T 4fL |- p-Failure using the ‘MQEE' 4

8 T | —— p-MNN criterion A

» g 2 :
i i

© 0 ,A 1

E 2 Roll rate gyro failui at t = 50 sec, .

4 F) Failure never declared. .]

0 20 40 60 80 100

Time (sec)

Fig. 10. Plot of p-Nominal, p-Fail, and p-MNN vs. time for sensor failure type #6.

- 6 Eof s p-Nominal Failure detection]
8 4 | p-Failure using the 'OQEE’ E
2 i p-MNN criterion F
g A
[[.]
[. et
5 o f ' /\l]
S Roll rate gyro failure at t = 50 sec B

4 C : Failure declared at t = 53.26 sec | 9

0 20 40 80 100

Time (sec) 60

Fig. 11. Plot of p-Nominal, p-Fail, and p-MNN vs. time for sensor failure type #6.

‘ continuously fed into the DNN’s target value for on-line learning purposes. As a result, in Fig. 10,
the estimate of the roll rate gyro from the MNN output still follows the corrupted p-gyro value
after the sensor has failed. Note that the time histories of p-MNN and p-DNN are in agreement
with the nominal time history for the roll rate gyro following successful SFD, as shown in Figs. [
9 and 11. f

An additional objective of this effort is to address the issues of the integration between the
SFDIA and AFDIA schemes. Although both SFDIA and AFDIA problems have been extensively
addressed and described in the technical literature in recent years, the authors have not been able to
find a single reference describing the integration of the two schemes within a flight control systems.

As described in previous sections, the SFDIA and the AFDIA schemes share the same detection
mechanism. Once the detection-alert is triggered, then the critical task is to decide among the
occurrence of a sensor failure, an actuator failure, and a false alarm. For this purpose a key role is
played by the trends shown by the on-line calculated and stored auto correlation (R,,) and cross
correlation functions (R,,, Ry, R,,). Only when any of these functions exceeds a threshold an
actuator failure declared, in lieu of a false alarm or a sensor failure. This is true even if at the same
time any of the quadratic estimation errors from the DNNs is exceeding its thresholds.

As for any other failure detection scheme, the selection of the numerical values of the different
thresholds is a trade-off between detection capabilities and low false alarm rate. In selecting
threshold values few general rules from statistics can be used and a detailed knowledge of the
system dynamics, measurement and system noise is very much required. For AFI purposes the

120 M.R. Napolitano et al. / Aircraft Design 3 (2000) 103-128

different levels of dynamic coupling shown by the cross-correlation functions play a major role. It

suffices to say that a failurc on any of the elevators actuators induces a much higher longitudi-

nal-lateral dynamic coupling than ailerons actuators failures imply. On the other side, an actuator

failure on a rudder induces a very distinctive behavior on the auto-correlation function R,,. For the

purposc of showing the complicated SFDIA-AFDIA integration scheme a sequence of different

failures is introduced within a 150s simulation:

Failure #1: apitch rate gyro failure involving large drifting bias (2.5 /s) with slow transient period
(4s) (Type #5). Failure occurrence: t = 30s.

Failure #2: an actuator failure on the right elevator with a stuck surface at + 10" leading to
a 25% reduction in aerodynamic effectiveness. Failure occurrence: t = 60s.

Failure #3: atemporary roll rate gyro failure with large sudden bias (2.5%/s). Failure occurrence:
t =90s.

Failure #4: an actuator failure on the rudder with a stuck surface at — 7° with a 25% reduction
in aerodynamic effectiveness. Failure occurrence: t = 120s.

Fig. 12 shows that the “OQEE” parameter exceeds the predefined threshold during the observation

period. It triggers a “state-of-alert” for both actuators and sensors. However, since failure #1 is

a sensor failure, this time a substantial longitudinal-lateral dynamic coupling, R,,, has not

occurred, as revealed in Fig. 13. Furthermore, the clear trend of the g-DNN error shown in Fig. 14

-
w

Out NN Error
~~~~~ Qut NN Threshold

-

-

N

(&1
T

!

Failure #1 ]
0.75 |- Slaw.drifting g-sensor failure .. ... ... ... ... ... b
| att=230sec

Faiiure declared at t = 32.36 sec

0 10 20 Time (sec) 30 40 50

o
w
X
(3]
1

Quadratic Estimation Error
OQEE (deg”2/sec”*2)

Fig. 12. “OQEE” vs. time for failure type #1 (pitch rate gyro failure at t = 30s).

0.04
I Sum of |Rpq|
~§ 0.03 ; ------ Thresh_Rpq ]
(] L ]
'g L Failure #1 1
x 002 |- Slow drifting g-sensor failure B
S F at t=30 sec
B 001 free ]
an | 4
% , 1
6 . N Y . A
0 10 20 .. 30 40 50

Time (sec)

Fig. 13. Sum of the absolute values of the coefficients of R,, vs. time for failure tvpe #1 (pitch rate gyro failure at
= 305).



M.R. Napolitano et al. [ Aircraft Design 3 (2000) 103-128 121

identifies the failure #1 as a “pitch rate gyro failure”. It should be noted that from the instant
g-DNN error exceeds threshold # 1 the on-line learning for the g-DNN is halted; furthermore,
from the instant g-DNN error exceeds threshold # 2, the g-DNN error becomes meaningless since
the output of the g-DNN replaces the reading from the pitch rate gyro. Fig. 15 shows a successful
SFA following by a positive SFDI. Thus, the time history of ¢- DNN is in good agreement with the
nominal value for pitch rate gyro.

Fig. 16 shows the trend of the “MQEE” parameter around the occurrence of failure #2.
Although failure #2 is an actuator failure, it could be interpreted as a sensor failure. However, the
suspected sensor failure is overruled by the trend of the cross-correlation functions. In other words,
a comparison of the magnitudes of the sums of the absolute values of the cross-correlation R ,,, R,
and R, allows the identification of the failure as an “elevator actuator failure”, as shown in Fig. 17.
It should be underlined that the decreasing trend in F1g 17 1s due to the successful AFA, following
the positive AFDI, provided by the combined actions of the on-line learning pitch, roll, and yaw
neural controllers. Fig. 18 shows the time history of the pitch rate, which confirms that the
fault-tolerance schemes can regain equilibrium of the aircraft following the elevator actuator
failure.

For failure # 3, Fig. 19 shows that “MQEE” parameter exceeds its threshold triggering detection
for both actuator and sensor failure. Once again, since failure # 3 is a sensor failure, the sum of the
absolute values of the coefficients of the cross-correlation function R,, does not substantially

-~ 10
g q-DNN Error ]
@ sL | Thresh#! _‘
£ P l----- Thresh#2 ]
< 4
g e L
T A Ao
g 4r Failure #1 / .
w r Slow drifting g-sensor failure ]
Z 2 at t=30 sec ]
a . ]
c 0 --------..A----‘r-~~---------..AM_..-...>----.‘ .¢-.-------‘.I-‘~->.A.A------
0 10 20 Time (sec) 30 40 50

Fig. 14. “q-DNN Error” vs. time for failure type # 1 (pitch rate gyro failure at t = 30s).

L q-Nominat J
G 68 |- | ------ g-Failure ]
S R q-DNN :
D
()
2
&
£ o * < 4
S 34 [ Failure #1 ]
& - Slow drifting g-sensor faiture 1

68 L . at t=30,sec . ,
0 10 S 20 . 30 40 50
Time (sec)

Fig. 15. “g-Faiture”, “q-Nominal”, ahd ;‘q-DNN” vs. time for failure type # 1 (pitch rate gyro failure at t = 30s).




122 M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128

10

MNN Error 1
...... MNN Threshold ]

e}
T

T
PO

[ Failure #2 ;
4 - Right elevator stuck at +10 deg. 5
25% effect reduction at t=60 sec

Quadratic Estimation Error
MQEE (deg*2/sec”*2)

| 4
0 L s 1"”[1

50 55 60 65, 70 75 80 85
Time (sec)

Fig. 16. “MQEE” vs. time for failure type # 2 (right elevator failure at t = 605s).

0.03
4
0.025 E Sum of |Rpq| ]
\ ) S S Thresh_Rpq ]
k] F !
9 002 4
5 [ Failure #2 1
3 0.015 i Right elevator stuck at +10 deg. -
- 1 Vi 25% effect reduction at t=60 sec ]
° 001 (- ) ERRRECEREE -
E » [ ]
3 F .
“ 0005 ( /\\M 4
0 i
50 55 60 65 70 75 80 85
Time (sec)

Fig. 17. Sum of the absolute values of the coefficients of R, vs. time for failure type # 2 (right elevator failure at t = 60s).

I q-Nominal
6.8 : ------ q-Failure ]
----- g-DNN |

Failure #2
Right elevator stuck at +10 deg.
25% effect reduction at t=60 sec -

50 55 60 65 70 75 80 85

Time (sec)

Pitch rate (deg/sec)

Fig. 18. “g-Failure”, “g-Nominal”, and “q-DNN” vs. time for failure type #2 (right elevator failure at t = 60s).



M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128 123

- ——— MNN Error N 1
------ MNN Threshold

Failure #3 i
N Temporary roll rate gyro failure.
att =90 sec.

Quadratic Estimation Error
MQEE (deg”*2/sec”2)

O =2 N W b OO N O
T

85 90 95 _. 100 105 110
Time (sec)

Fig. 19. “MQEE” vs. time for failure type #3 (roll rate gyro failure at 1 = 90 s).

0.04
. Sum of |Rpq| 1
§ 003 L Thresh_Rpq ]
8 § ]
g L Failure #3 1
€ 002 |- Temporary roll rate gyro failure 7
s L att =90 sec. 1
2 i ]
0 r . L
85 90 00 105 110

95 Time (sec) 1

. Fig. 20. Sum of the absolute values of the coefficients of R, vs. time for failure type # 3 (roll rate gyro failure at t = 90s).

8
<N ~—— p-DNN Error
] -~ -~ Thresh#1 1
£ 6 N <o - Thresh#2 7]
< Lo R TR PR G — m—
84 ]
= Failure #3
g Temporary roli rate gyro failure 1
w o L att =90 sec. .
§ ]
(= O I
6- 0 Aandnihe. I “ i

85 90 95 Time (sec) 100

Fig. 21. “p-DNN Error” vs. time for failure type #3 (roll rate gyro failure at t = 90s).

increase as shown in Fig. 20. Furthermore, since the p-DNN error exceeds its threshold #2 in
Fig. 21, a “roll rate gyro failure” is declared. Since the sensor failure is of a temporary nature, this
SFDIA scheme allows a “rehabilitation” of the failed sensor at some specified time after the failure
occurrence by comparing the sensor reading p-failure with the cutput of p-DNN. If the difference
between the two parameters is within a selected tolerance for a specified length of time, then the roll




124 M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128

6
[ p-Nominal ]
v 4 r - - p-Failure ]
s | - p-DNN
& 2 f G T ]
T ‘ ]
o [ ' ]
‘(; 0 . . T i il
[ r B
3,0 Failure #3 ]
& -2 Temporary roll rate gyro failure
4 att =90 sec. ‘
85 90 105 110

100
95Time(sec) 0

Fig. 22. “p-Failure”. *p-Nominal”, and “p-DNN" vs. time for failure type # 3 (roll rate gyro failure at t = 90s).

8 1
MNN Error 4

>>>>>> MNN Threshold 1

6 .
Failure #4 7

Rudder stuck at -7 deg.
F 25% effectivness reduction 1
2 i att= 120 sec. .

Quadratic Estimation Error
MQEE (deg”2/sec”2)
H
T

0 M 1 1 1

115 120 125 130 135 140
Time (sec)

Fig. 23. “MQEE” vs. time for failure type #4 (rudder failure at 1 = 1205).

rate gyro can be declared operational again, as shown in Fig. 22. Figs. 19 and 22 show instead the
successful SFA achieved by replacing the value of the failed p-gyro with its estimate from the
corresponding DNN.

Failure #4, the last failure in this simulation, represents a rudder actuator failure. Once again,
the “MQEE” parameter exceeds its threshold triggering detection failure for both actuator and
sensor in Fig. 23. Once again the -DNN error exceeds the lower threshold, as shown in Fig. 24; this
halts the on-line learning for the r-DNN. However, the suspected “sensor failure” is overruled by
the trend of the sum of the absolute values of the coeflicients of the auto-correlation function
R,, which exceeds its threshold, as shown in Fig. 25. Therefore a “rudder actuator failure” is
declared. As in Fig. 17, a decreasing trend can be noticed in Fig. 25 due to the successful AFA
achieved by the on-line learning roll and yaw controllers. It should be mentioned that this type of
rudder actuator failure was the limit failure for which the aileron-induced yawing moment was able
to accommodate the failure-induced yawing moment. It should also be emphasized that the
actuator rudder failure is the worst case scenario for commercial aircraft.

The overall effectiveness of the AFA scheme for both elevator and rudder failures is more clear
from the trends in Figs. 26 and 27, which show the deflections of the left and right elevators, left and



M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128

w

-
T

o

r-DNN Error (deg*2/sec*2)
N
T

r-DNN Error
------ Thresh#1
----- Thresh#2

Failure #4

Rudder stuck at -7 deg.
25% effectivness reduction

att=120 sec.

i 1

N
N
[&4]

Fig. 24. “r-DNN Error” vs. time for failure type #4 (rudder failure at r = 1205s).

0.12

0.1

0.08

0.06

0.04

Sum of |Rrrj coef.

0.02

®

120

125

Time (set_:)

130 135

140

T

M

|
/
|

Sum of |Rrr]
------ Thresh_Rrr

Failure #4

Rudder stuck at -7 deg.
25% effectivness reduction

att= 120 sec.

S |

120

135

Time (sec)

/\ /\/r\ T
125 130

140

125

Fig. 25. Sum of the absolute values of the coefficients of R,, vs. time for failure type #4 (rudder failure at : = 120s).

20
S I Right ELEV
§ ol [ Lef ELEV
S ] Failure #2 ]
3 o L <~ Right elevator stuck ]
€ _/\//\ at +10 deg. 25% effect ]
Q L . reduction at t=60 sec ]
g 10 ' —
g L -4
3
2 -20 \ L L 1 1 | L
0 20 40 . 80 100 120 140
Time (sec)

Fig. 26. Right and left elevator deflections vs. time for failure types # 1-#4.

right ailerons, and rudder. As stated above, the primary goal following an actuator failure is to
regain a trimmed equilibrium condition for the aircraft. For that purpose;following failure # 2 the
left elevator provides the necessary pitching deflection as calculated by the on-line learning pitch




Surface Deflection (deg)

Fig. 27. Right

Roll Euler angle (deg)

Yaw rate (deg/sec)

. —_
N o N S [)] © o

N

-

'
ey

o

M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128

Left AILE ]
- - RightAILE 1
----- RUDDER ]
| Failure #2 REE T
[ Right elevator stuck A ]
/N\A
r at+10 deg. 25% effect . p /”/ \«J b
[ reducti 1 1=60 Failure #4 b 1
[ reduction at1=60 sec Rudder stuck at -7 deg. L .
[ \ ) | 25% effect reduc. at t=120 sec |
0 20 40 60 80 100 120 140
Time (sec)

and left aileron and rudder deflections vs. time for failure types # 1-#4.

:_ L Roll Euler angle I

Failure #4

- . Rudder stuck at -7 deg.

b Failure #2

3 Right elevator stuck 25% effect reduc. at t=120 se

[ at +10 deg. 25% effect

} reduction at t=60 sec \

: 1 L 1 1 L 1

0 20 40 60_ . 80 100 120 140
Time (sec)

Fig. 28. Roll Euler angle vs. time for failure types # 1-#4.

: |

C Failure #4 7
Rudder stuck at -7 deg.

L 25% effect reduc. at t=120 sec

0 20 40 100 120 140

60 _ 80
Time (sec)

Fig. 29. Yaw rate vs. time for failure types # 1-#4.

neural controller, as shown in Fig. 26. Fig. 27 shows instead the compensating aileron deflections
(immediately after the positive FDI after t = 60s) canceling the rolling moment induced as
a cross-effect by the right elevator failure; also shown after r = 1205 is the aileron deflection
canceling the yawing moment induced as a cross-effect by the rudder failure.




M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128 127

To complete the dynamic scenario of the simulation Figs. 28 and 29 show the time histories of

‘ key aircraft parameters, that 1s, the roll Euler angle, ¢, and yaw rate. r, respectively.

5. Conclusions

This paper discusses the performance of a simulated neural network-based fault-tolerant flight
control system with capabilities for detecting, identifying, and accommodating sensor and actuator
failures. First, step-type and ramp-type transient failures of the rate gyros from a model of
a commercial transport aircraft were simulated and discussed by using two different detection
criteria. The simulation results indicate that the MQEE-criterion seems to be more suitable for
step-type sensor failures while the OQEE-criterion performs better for ramp-type sensor failures.
Therefore, a combined detection scheme provides more reliable detection capability for the SFDIA
for any type of failures.

Next, a particular logic is introduced allowing the integration of the two schemes with the goal of
minimizing the false alarm rate as well as incorrect failure identification. The results confirm the
potential offered by on-line learning NNs for both state estimation and control purposes within
fault-tolerant systems.

Acknowledgements

Partial support for the first author has been provided through the NASA Ames Grant No. NAG
2-1158. Partial support for the second and third author has been provided through the AFSOR
Grant F49620-98-1-0136.

References

[1] Friedland B. Maximum likelihood failure detection of aircraft flight control sensors. ATAA Journal of Guidance,
Control, and Dynamics 1982;5(5):498-503.

[2] Baruh H, Choe K. Sensor-failure detection method for flexible structures. AIAA Journal of Guidance, Control, and
Dynamics 1987;10(5):474-82.

[3] Napolitano MR, Neppach CD, Casdorph V, Naylor S, Innocenti M, Silvestri G. A neural-network-based scheme
for sensor failure detection, identification, and accommodation. AIAA Journal of Guidance, Control, and Dynam-
ics 1995;18(6):1280-6.

[4] Napolitano MR, Younghwan A, Seanor B, Pispistos S, Martinelli D. Application of a neural sensor validation
scheme to actual boeing B737 flight data. Proceedings of the ‘99 AIAA Guidance Navigation & Control
Conference, August 1999.

[5] Ha CM, Wei YP, Bessolo JA. Reconfigurable aircraft flight control system via neural networks. Proceedings of the
1992 Aerospace Design Conference, AIAA Paper 92-1075, Irvine, CA, February 1992.

[6] Huang C, Tylock J, Engel S, Whitson J, FEilbert J. Failure-accommodating neural network flight control.
Proceedings of the AIAA Guidance, Navigation and Control Conference, AIAA Paper 92-4394, Hilton Head, SC,
August 1992,

[7] Napolitano MR, Chen CI, Naylor S. Aircraft failure detection and identification using neural networks. AIAA
Journal of Guidance, Control, and Dynamics 1993;16(6):999-1009.




128 M.R. Napolitano et al. | Aircraft Design 3 (2000) 103-128

[8] Ho HS. Balakrishnan SN. Fuzzy logic in restructurable flight control systems. Proceedings of the AACC American
Control Conference. Part 2. Scattle. Washington. June 1995, p. 1362-6.

[9] Ochi Y. Kanai K. Application of restructurable flight control system to large transport aircraft. AIAA Journal of
Guidance. Control, and Dynamics 1995:18(2):365-70.

[10] Napolitano MR. Casdorph V. Neppach C. Naylor S. On-line learning neural architectures and cross-correlation
analysis for actuator failure detection and identification. International Journal of Control 1996:63(3):433-55.

[11] Motyka P. Bonnice W. Hall S. Wagner E. The evaluation of failure detection and isolation algorithms for
recontstructurable control. NASA Contractor Report 177983, 1985.

[12] Bonnice W. Motyka P, Wagner E. Hall S. Aircraft control surface failure detection and isolation using the¢ OSGLR
test. Proceedings of the AIAA Guidance. Navigation and Control Conference. AIAA Paper 86-2028. Williamsburg,
VA. August 1986.

[13] Bonnice W. Wagner E. Hall S. Motvka P. The evaluation of the OSGLR algorithm for restructurable controls.
NASA Contractor Report 178083, 1986. .

[14] Bundick WT. Development of an adaptive failure-detection and identification system for detecting aircraft
control-element failures. NASA Technical Paper 3051, 1991.

[15] Wilsky AS. Failure detection in dynamic systems. Agard LS-109. Neuilly sur Seine. France, October 1980. p. 2.1-14.

[16] Kerr TH. False alarm and correct detection probabilities over a time interval for restricted classes of failure
detection algorithms. IEEE Transactions of Information Theory 1982:1T-28(4):619-31.

[17] Rumelhart D. McClelland J. Parallel distributed processing. Cambridge. MA: MIT Press, 1986.

[18] Nielsen RH. Neurocomputing. Reading. MA: Addison Wesley Publishing Company, 1990.

[19] Simpson PK. Artificial neural systems: foundations. paradigms, applications. and implementations. New York:
Pergamon Press. 1990.

[20] Narendra KS. Partasarathy K. Identification and control of dynamical systems using neural networks. IEEE
Transactions on Neural Networks 1990:1(1).

{21} Hunt KJ, Sbardato D, Zbikowski R, Gawthrop PJ. Neural networks for control systems - a survey. Automatica
1992:28(6):1083-97.

[22] Levin AU, Narendra KS. Control of non-linear dynamical systems using neural networks: controllability and
stabilization. IEEE Transactions on Neural Networks 1993:4(2).

[23] Cybenko G. Approximation by superposition of sigmoidal functions. Mathematics of Control Signals and Systems
1989;2(4):303-9.

[24] Polycarpou M. On-line approximators for nonlinear system identification: a unified approach, control and
dynamic systems series. Neural Network Systems Techniques and Applications. Vol. 7. New York: Academic Press,
1998.

[25] Polycarpou M. Vemuri AT. Learning methodology for failure detection and accommodation. IEEE Control
Svstems Magazine 1995:15(3):16-24.

[26] Chen CL. Nutter RS. An extended back-propagation learning by using heterogeneous processing units. Proceed-
ings of International Joint Conference on Neural Networks. Baltimore. Maryland, June 1992

[27] Alexander C. Cortellessa V. Del Gobbo D. Mili A, Napolitano M. Modeling the fault tolerant capability of a flight
control system: an exercise in SCR specifications. to be presented at the LFM 2000, 5th NASA Langley Formal
Methods Workshop, to be held on June 13-15, 2000.

[28] Del Gobbo D. Napolitano MR. Issues in fault detectability for dynamic systems. To be presented at the "2000
American Control Conference (ACC) Conference, Chicago, IL, June 2000.

[29] Del Gobbo D. Cukic B, Easterbrook S. Napolitano MR. Fault detectability analysis for requirements validation of
fault tolerant systems. Proceedings of the 4th IEEE High-Assurance Systems Engineering (HASE) Symposium,
Washington DC, November 1999.

[30] Del Gobbo D. Napolitano MR, Callahan J, Cukic B. Experience in developing system requirements specification
for a sensor failure detection and identification scheme. Proceedings of the 3rd IEEE High-Assurance Systems
Engineering Symposium, Washington DC, November 1998.

[31] Napolitano MR, et al. Kalman filter and neural network approaches for sensor validation in flight control systems.
IEEE Control Systems Technology 1999:6(5):596.

- [32] RoskamJ. Airplane flight dynamics and automatic flight controls, Part 1. design, analysis and research corporation.

Kansas: Lawrence, 1995.



Appendix A.3

Authors:
Del Gobbo, D., Napolitano, M.R.

Title:
“Issues in Fault Detectability for Dynamic Systems”

Proceedings of the 2000 American Control Conference (ACC) Conference, Chicago,
IL, June 2000




Paper ID:
~ACCO0-IEEE1261

Issues in Fault Detectability for Dynamic Systems

Diego Del Gobbo and Marcello R. Napolitano
Department of Mechanical and Aerospace Engineering, West Virginia University,
Morgantown, WV 26506-6106, USA
E-mail: delgobbo(@ds5500.cemr.wvu.edu, napolit@cemr.wvu.edu

Abstract

Research on fault detection has witnessed an increasing interest in recent years.
However, little attention has been indicated to certification of such systems. There is a
significant need to develop means and methodologies that allow an effective verification of
fault detection system capabilities. Certification processes involve specification of system
requirements followed by testing of the system against them. Within this process we focus
our attention on validation of detection requirements. An accurate analysis of detection
feasibility is an important step toward specification of meaningful requirements. This
paper presents a detectability condition in the frequency domain for faults in linear
systems. The major advantage of this condition is that it is independent of the fault
detection approach adopted. An example of detectability analysis on the inverted pendulum

system is provided.




1 Introduction

Fault Detection (FD) systems are necessary to add fault tolerant capabilities in
plants where safety is a major concern. In the past two decades the technical commuiity
has presented a large variety of techniques to address this need. However, little has been
done to analyze how to specify this need and how to objectively assess if a given FD
algorithm does provide reliable detection. Lack of a certification methodology is a major
impediment to further development of FD systems.

Requirements specification plays a key role within this certification framework. It
describes expected system functions, performance, and operative constraints, without
involving any detail about their implementation. By testing the system against its
requirements one can infer whether the system performs as required. In specifying the
requirements for a FD system one must specify which plant components can fail, which
class of faults are more likely to occur, disturbances and operative conditions of the plant,
response time to fault occurrence. Before this information can be accepted as requirements
specification, feasibility of required functions and performance must be validated [2]. Is it
possible to detect any of the specified faults within the required timeframe under specified
disturbance and operating conditions of the plant? To answer this question we need first to
define what “detection feasibility” (or defectability) means, then we need to provide an
analytical condition to assess if a fault is detectable under specified conditions.

Fault detectability is a relatively new concept in the FD field. Only a few papers in
the technical literature focus on fault detectability; unfortunately, this concept assumes
slightly different meanings in each of them. Definitions of detectability and “strong Sfault

detectability” are presented in [1] and [10]. In the latter detectability conditions are




formulated in the context of parity equations while in [7] and [8] detectability is addressed
in the context of unknown input Fault-Detection observers. In [9] the limits of fault
detectability in systems with model uncertainty are derivéd in the time domain. In [5] the
size of the smallest detectable fault in innovations-based FD schemes with optimum
threshold is determined. Finally, in [4] a residual generator is synthesized to meet false
alarm rate requirements and minimize the size of detectable faults.

In the above references, fault detectability is formulated with respect to a particular
FD approach. Questions may arise, if there are constraints on the capability of a FD
scheme that do not depend on the FD algorithm, but on the structure of the system and on
the fault dynamics. Moreover, within a certification framework a definition is needed that
does not depend on any FD technique.

To address this issue we provide a definition of fault detectability that does not

depend on any FD approach. Detectability is analyzed as a system property and conditions

for a fault to be detectable are derived in the frequency domain.

In the following section a definition of detectability as system property is
formulated and compared to other definitions. Then, fault detectability conditions are
derived in the frequency domain for linear systems with structured disturbances. In the last
section the results of fault detectability analysis on the sensors of an inverted pendulum are

reported.

2 Definition of fault detectability
Assessment of detection feasibility is part of the validation process of the

requirements for a FD system. Since requirements specify system functions and



performance without referring to any particular solution, detection feasibility too must be
addressed independently from any FD technique. Our only assumption is that the FD
system adopts an analytical redundancy approach, that is detection is accomplished by
processing available measurements of system inputs and outputs.

Detection feasibility is of course strictly related to the fault dynamics. Slow varying
faults, low size faults can be more difficult to detect. Disturbances also play a major role.
Because of them, the correlation between system inputs and outputs suffer an inherent
uncertainty. Analytical redundancy based FD algorithms depend on this correlation to
accomplish their task. Hence, disturbances are a key parameter in fault detectability
assessment. The dynamics of the system plays an important role too. Depending on the
system dynamics, system outputs can mask or enhance information related to the fault.
After these considerations on detectability issues, the following definition can be stated:

“A fault on a component of the system is said to be detectable if knowledge of

system inputs and outputs over a finite time interval following the occurrence of
the fault allows the detection in spite of disturbances”.

With the above definition, detectability of a component fault is a system property
that can be analyzed regardless of the FD approach. Detectability only depends on the fault
dynamics, on the system dynamics, and on the disturbance distribution.

Definitions of detectability presented in the literature capture some of the
characteristics of the above interpretation. In [7] Frank at al. define a system to be
“unknown-input fault detectable” if for “almost all faults, an arbitrary small time interval
allows a unique decision for the fault only on considering the known input and the

available output data in this time interval’. According to this definition fault detectability




is a system property that holds for “almost all faults” while in our definition detectability is
related to each single fault. In a system there can be both detectable and undetectable faults
at the same time. An example is provided in section 4. Hence, Frank’s definition leads to
more restrictive detectability conditions.

In [9] Horak states that a fault is detectable if its effects on system outputs overtake
the effects of model uncertainties. Using an optimization procedure based on the

Maximum Principle, the maximum possible deviation between nominal output values and

- actual output values (“reachable measurements interval”) is derived at each time step. A

fault is declared detectable if it causes the system output to assume values outside the
reachable measurement interval. This definition of fault detectability highlights the concept
of detection feasibility in spite of disturbances. However, it differentiates detectable from
undetectable faults in terms of fault effects in time domain only. Faults that add to system
output a low-amplitude, high-frequency component could be detected by analyzing the
frequency content of the measurements. Nevertheless, they are undetectable, according to
Horak’s definition, if fault effects fall within the reachable measurement interval.

Despite some differences, our definition and those provided in [7] and [9] represent
an effort to define fault detectability in terms of system capability to provide fault-related
information for a successful detection. In other definitions presented in the literature fault
detectability is either intended as detection capability of a particular FD system ([1] and
[6]), or as the best detection capability achievable by adopting a certain FD approach ([8]
and [10]). None of the above classes of definitions reflect our need of a solution
independent definition of fault detectability. However, in the latter, fault detectability can

be regarded as a system property given the generality of the FD approach. In [8] the




authors focus on unknown input fault-detection observers, while in [10] the authors focus
on parity space based FD schemes.

In [10] a fault is “delectabz'é if there exists a résidual generator such that the
transfer function from the fault to the residual is non-zero”. A fault is “strongly detectable
if there exists a residual generator such that the steady state value of the transfer function
from the fault to the residual is non-zero”. Both conditions are then expressed within the
parity space approach. Simple detectability and strong detectability were introduced in [1]
in order to distinguish between residuals where the effects of the fault can disappear even
if the fault still exists and residuals where the effects of the fault persist if the fault is
present. In [1] the definitions are referred to a particular residual generator, while in [10]

detectability and strong detectability are seen as system properties.

3 Fault Detectability condition

Consider the following state-space description of a linear, time invariant system,
with structured disturbances and fault inputs:

x(t) = Ax(t) + Bu(t) + E d(t) + F.f(¢) (D

y(t) = Cx(t) + E,d(t) + F,f(1) (2)
x(t), y(t), and u(r) are the state, output, and input vectors respectively; d(r) is the
disturbance vector acting on the dynamics and on the measurements; f(¢) is the fault

vector whose elements represent malfunctions in system components, (either actuators,
system elements, or sensors). .1, B and C are the state, input, and output matrices

respectively:, E, and E, are the matrices that characterize the disturbance action on system

dynamics and measurements respectively; F, and F, are the matrices that characterize the




fault action on system dynamics and measurements respectively. The system can either be
open or closed loop; in the latter case the input vector is function of the state. To preserve
" the linearity of the system, only additive faults have been considered. Disturbances are
considered to be independent from the state of the system and can represent uncontrollable
inputs as well as modeling errors.

In the system described by (1) and (2), detectability of faults does not depend on
the state trajectory since neither disturbances nor faults are function of the state. Hence,
fault detectability conditions can be formulated considering only the effects of disturbances

and faults on the output of the system. A fault () on the i component is detectable if:

3{j ctom, so = @.0) } 1| R0 | > | ¥, G0

€)

Aa

where m is the number of outputs, ¥,(jw) is the Fourier transform of the output on the "
sensor generated by the fault f(s) on the i"™ system component, Y,,(jw) is the Fourier
transform of the output on the j" sensor generated by the disturbance (1), | -|,, denotes

the power of the signal in the frequency band Aw:

. 1% g
lavor|,, = 3;! | aj@) [ do (4)
Condition (3) can also be stated as follows: “a fault /(1) onthe it component is detectable
if a frequency band Aw exists, such that the power in that band of the i output due to the
fault signal is larger than the power due to disturbances”.
In order to verify if the above condition is satisfied the following quantities are

needed:



Y(jw . . .

7«‘%2;)7 transfer function matrix between the i element of the fault vector and
i

system output;

Y(jow)

D(w) transfer function matrix between the disturbance vector and system output,

o F(jw) Fourier transform of the fault signals;

o |S,(jw) [ power spectral density of disturbances;

Hence, the power spectral density of the quantities in (3) can be computed as:

2
2

Y,(jo) A 2 '
[n,G0| = | F5e | [ FUa | ®)
e | rue | o
| Y,,(jw) l = ml | S(jw) l )

By comparing spectral densities in (5) and (6) over all frequencies and all outputs it is

possible to state if a frequency band Aw and an output y,(r) exist such that (3) is satisfied.

4 Fault detectability analysis for the inverted pendulum sensors

In this section fault detectability analysis for the sensors of an inverted pendulum is
performed. Some results of FD schemes applied to this system can be found in [1], [10],
and [3]. The block diagram in Fig. 1 represents a continuous model of the inverted
pendulum controlled in closed loop. For simplicity purposes, only disturbances on the
system dynamics are considered. The full state is assumed to be available for control
purposes, but only cart position and rod angle measurements are considered for fault

detectability analysis. Fault dynamics is assumed to be exponential and is described by:

£ = 4,(1-¢") (M



5,0 = 4(1-¢") (®)
/,(t) and f,(t) denote faults on position and angle sensors respectively. The following
values have been used for the parameters:

A, =01 (m), 4, =1 (degree), r ][0,2] (sec) )
Disturbances have been modeled as white noise with power spectral density |S,[ = 0001,

filtered by H,(s). The filter has been selected to allow both low and high frequency

disturbances to enter into the system. The question we wish to answer is whether it is
possible to detect faults described by (7), (8), and (9) on position and angle sensors under

given disturbance conditions.

In order to condcut the detectability analysis the transfer function matrices between
fault and output and between disturbance and output need to be computed. The transfer
function matrix between fault input and system output is given by:

Gp(s) Gu(s)| "
[GP‘(S) Gu(s)]-(h-Go(s)BKx) (10)
The elements G,,(s), G, (s), G,(s), and G,(s) are the SISO transfer functions between

fault inputs and system outputs. The first subscript locates the fault, while the second
subscript indicates the output ( p,a standing for position and angle sensor respectively).

The transfer function matrix between disturbances and system output is given by:

G, (5) -
[G:(s):|=(I+G°(S)BK") G,(s)H,(s) h))

The elements G, (s) and G, (s) are the SISO transfer functions between disturbance input

and system outputs respectively.




By analyzing the system response to faults with different value of 7 it is possible to
evaluate the capability of the system to provide fault-related information. Figure 2 shows
sensor outputs related to a fault on the angle sensor for two different values of the time
constant r . In both cases the steady state values of the effect of the fault are different from
zero showing a marked correlation between presence of the fault and faults effect on
system outputs. In Figure 3, the outputs related to a fault on the position sensor are shown
for the same values of 7. This time the steady state values are zero. Thus, even if the fault
is still present, the system does not provide any fault-related information after a sufficient
time is elapsed from the occurrence of the fault. Because of its own dynamics the system
is not able to provide durable fault-related information for fault on the position sensor. No
matter which FD technique is adopted, detection of faults on the position sensor is not
possible for some of the faults described by (8) and (9).

In Figure 4 the magnitude of the transfer functions between fault input and system

outputs are shown. Both [GW(s) | and | Gm(s)[ decrease substantially at low frequencies.
This feature is related to the lack of strong detectability for fault on the position sensor;
fault effects are visible only during the transient. At high frequency | G, () | is quite large;

hence, faults with a large content in high frequency are likely to be detectable. | G, () | and

| G,(s)| are both non-zero at steady state conditions; hence, faults should be easily
detected if their low frequency content is high.
Figure S shows the power spectral density of the sensors output for a fault on the

angle sensor, along with the power spectral density of the output component due to

disturbances. Referring to the detectability condition stated in the previous section, the




fault is detectable if a frequency interval exists where either condition (12) or (13) is

satisfied:
I Y (jo) I2 > ‘ Y, (jo) I2 T e (12)

| LG [ > | Yulio) [ (13)

From the power spectral density diagrams, the class of fault considered reveals to be

detectable for any value = e [0,2]. In fact, at frequencies below 0.02 rad/sec both of the

above conditions are satisfied.
In Figure 6 similar quantities are shown for faults on the position sensor. For a fault
with time constant 7 = 0 the detectability condition is satisfied since:
|r,Go [ > |YGo) [ Vo > Trad [ sec (14)
On the other hand, a fault with time constant = = 2 reveals to be undetectable, since:
|Luo [ <|Lua|  ve (15)
|Vt <|tuGe)[ Vo (16)

Resuits of the detectability analysis can be summarized as follows:

« faults on the angle sensor with dynamics described by (7) are detectable, regardless of
the value of the time constant ¢ . Fault effects overtake disturbances at low frequencies
on both system outputs.

« detectability of faults on the position sensor whit dynamics described by (8) depends
on the value of the time constant ¢ . For low values (abrupt faults) effects of the fault

overtake disturbances on the position sensor output at frequencies larger than 7rad/sec.

For large values of ¢ (slow varying faults) the fault is not detectable.




These results state that detection requirements of faults specified by (8) and (9) are not
feasible. If such faults are to be detected, then an approach other than analytical

redundancy must be adopted.

Conclusions

Objective certification tools are critical for the future development of fault
detection systems. Within this framework the paper illustrates the importance of
detectability analysis to allow specifying meaningful requirements for such systems.
Detectability conditions for additive faults on linear systems have been formulated in the
frequency domain. These conditions are independent of the fault detection technique
adopted, allowing a solution-independent specification of detection requirements.

The importance of detectability analysis has been shown by analyzing detectability
properties of faults on two sensors of an inverted pendulum system. The analysis revealed
insufficient capability of the system to provide fault-related information for faults on the
position sensor. Furthermore, it highlighted frequency ranges where system outputs
provide fault-related information, thus providing valuable information for an enhanced

design of the fault detection system.

Acknowledgement
Partial support for the first author has been provided by DEPSCOR/AFOSR grant
F49620-98-1-0136. Partial support for the second author has been provided by the Institute

for Software Research (ISR) under grant NAG4-163.




References

[1] Jie Chen and R.J. Patton. A re-examination of fault detectability and isolability in
linear dynamic systems. Fault Detection, Supervision and Safety for Technical
Processes, pp. 567-73, Espoo, Finland,1994. IFAC.

[2] D. Del Gobbo, B. Cukic, S. Easterbrook, and M. Napolitano, Fault Detectability
Analysis for Requirements Validation of Fault Tolerant Systems. To be published on
Proceedings of 4" IEEE International High Assurance Systems Engineering
Symposium, 1999.

[3] D. Del Gobbo, Sensor Failure Detection and Identification using Extended Kalman
Filtering. Master thesis; 1998.

[4] X. Ding, P.M. Frank and L. Guo. An approach to residual generator and evaluator
design and synthesis. IFAC 12™ Triennial World Congress, pp.383-86, 1993.

[S] A. Emami Naeini, MM. Akhter and S.M. Rock. Effect of model uncertainty on
failure detection: the threshold selector. IEEE Transaction on Automatic Control, vol.
33, no. 12; pp.1106-15, 1988.

[6] Y.E. Faitakis, S. Thapliyal and J.C. Kantor. An LMI approach to the evaluation of
alarm thresholds. International Journal on Robust Nonlinear Control, vol. 8; pp. 659-
67, 1998.

[71 P.M. Frank and B. Koppen. Review of optimal solutions to the robustness problem
in observer-based fault detection. Journal of Systems and Control Engineering, vol.
207, no. 12; pp.105-12, 1993.

[8) PM. Frank and J. Wunnenberg. Robust fault diagnosis using unknown input
observer schemes. In (11), pp.47-98.

[9] D.T. Horak. Failure detection in dynamic systems with modeling errors. Journal of
Guidance, Control, and Dynamics, vol. 11, no. 6; pp. 508-16, 1988.

[10] M. Nyberg and L. Nielsen. Parity functions as universal residual generators and
tool for fault detectability analysis. 36™ IEEE Conference on Decision and Control, vol.
5; pp-4483-9.

[11] RJ. Patton, P.M. Frank and R.N. Clark. Fault diagnosis in dynamic systems:
theory and applications, 1989 (Prentice Hall, Englewood Cliffs, NJ).




FIGURES
—d(t)-» Hd(s)Kd |
f®
—o-| K B —»é)—» Gols) O
y®
Kx e
Figure 1. Block diagram of the inverted pendulum.
Position sensor output (meter)
0.01
T\
0.01
N TN
0.02 A , \T =2
0.04 \\;‘ : ! 4
i ; i
00% 05 1 15 2 25 3 35 n 45 5
Angle sensor output (degree)
14 z z ! ' ' T T
12 T =0 5
1 / . i : H i :
038 . ’
0.4 ‘ — =2 — :
02 ; " ]
-0'20 OTS ; 11.5 l2 2{5 :l! 31.5 4 45 5
sec

Figure 2. Sensor outputs after a fault on the angle sensor




Position sensor output (meter)

05 1 15 2 25 3 3s 4 45

Angle sensor output (degree)

0 0S 1 15 2 25 3 35 4 45
sec

Figure 3. Sensor outputs after a fault on the position sensor

ok |(5Pp|

10

-
[~

o
N 8
o,
-
Q,

dB _ |Gapl

[Gaa|

-100 R ]l " PSS

10 10 10

of Gaa

-200 . NP | . NP |

10 10 10
rad/sec

Figurc 4. Magnitude of transfer functions

10



10 Al 1 1 al i L
10° 10° 10" 10 10' 10 10’
10s N v T T T L] T B
Ydal? ]
10’ E I | 3
10° F
10"°F
10" 3
-20
10 aaal aaal " ik dedad " ddad " Add aassd, i i Addd
10° 10° 10" 10’ 10' 10° 10°
rad/sec
Figure 5. Power spectral density of sensor outputs for a fault on angle sensor
10s [ T T L T T <
i , ]
f [Yap| :
10
10° b
10" a
10"5 ’4 — ““x. .l"
10 10 10
10" ¢ S — U — er— m
F : ]
S f Y dal ]
10 b
10" 2
10" 3
10"F
.28 : ]
10 sl et daassl " ot aaaaal i a2 aaaal i bl L Add Al
10° 10’ 10" 10’ 10' 10’ 10’
rad/sec

Figure 6. Power spectral density of sensor outputs for a fault on position sensor




Appendix A4

Authors:
Del Gobbo, D., Cukic, B., Easterbrook, S., Napolitano, M.R.

Title:

“Fault Detectability Analysis for Requirements Validation of Fault Tolerant
Systems”

Proceedings of the 4™ IEEE High-Assurance Systems Engineering (HASE) Symposium,
Washington DC, November 1999



Fault Detectability Analysis for Requirements Validation
of Fault Tolerant Systems

Diego Del Gobbo', Bojan CukicT,’ Marcello R. Napolitano' '

*Department of Mechanical and Aerospace Engineering
7‘Department of Computer Science and Electrical Engineering

West Virginia University
Morgantown, WV 26506-6106

delgobbo@ds5500.cemr.wvu.edu, cukic@csee.wvu.edu,

napolit@cemr.wvu.edu

Abstract

When high assurance applications are concerned, life
cycle process control has witnessed steady improvement
over the past two decades. As a consequence, the number
of software defects introduced in the later phases of the
life cycle, such as detailed design and coding, is
decreasing. The majority of the remaining defects
originate in the early phases of the life cycle. This is
understandable, since the early phases deal with the
translation from informal requirements into a formalism
that will be used by developers. Since the step from
informal to formal notation is inevitable, verification and
validation of the requirements continue to be the research
focus.  Discovering potential problems as early as
possible provides the potential for significant reduction in
development time and cost.

In this paper, the focus is on a specific aspect of
requirements validation for dynamic fault tolerant control
systems: the feasibility assessment of the fault detection
task. An analytical formulation of the fault detectability
condition is presented. This formulation is applicable to
any system whose dynamics can be approximated by a
linear model. The fault detectability condition can be
used for objective validation of fault detection
requirements. In a case study, we analyze an inverted
pendulum system and demonstrate that “reasonable”
requirements for a fault detection system can be
infeasible when validated against the fault detectability
condition.

1. Introduction

Fault identification has been recognized as an
important mechanism for improving -system safety. For
example, Failure Modes and Effects Analysis (FMEA)
[17] considers the failure of any component within a

S. Easterbrook

Department of Computer Science
University of Toronto
6, King's College Rd.,
Toronto, Ontario M5S 3HS
sme@cs.toronto.edu

system and tracks its effects to determine the ultimate
consequences. Similarly, Event Tree Analysis (ETA)
takes as its starting points the events that can affect the
system and tracks them forward to determine their
potential consequences. Fault Tree Analysis (FTA) differs
from ETA in that it tackles the problem in the reverse
direction. It starts with the identification of system
hazards and works backwards to determine their possible
causes.

FMEA, ETA, and FTA provide good frameworks for
fault identification. Based on their results, system
designers employ fault tolerant mechanisms to minimize
the probability that, during system operation, identified
potential faults propagate and cause the system to fail.
However, fault identification techniques do not attempt to
study fault detectability. In other words, these techniques
may point to a potential problem and its consequences,
but do not provide any assurance in the ability of the
system to detect the problem if it appears during system
operation.

In this paper, we focus on the specific requirements
validation technique applicable in the analysis of dynamic
fault tolerant control systems, such as nuclear and
chemical plants, aircraft, and spacecraft. Fault tolerance
is required in these systems for obvious safety, mission
criticality and cost issues and it is often achieved by
physical redundancy of the critical components. A Fault
Detection (FD) scheme monitors these critical
components and, as a fault is detected, recovers the
system operation by switching from the faulty unit to one
of the (non-faulty) backup units. Physical redundancy is
a straightforward approach to fault tolerance. However, it
presents some drawbacks, such as additional cost, power
consumption, weight (important design parameters in
aircraft and spacecraft) as well as the introduction of
additional (but not essential) complexity.




To overcome these limitations analytical redundancy
([5], [6], and [14]) has been considered as an alternative
approach to physical redundancy in the technical
literature. This approach is based on the fact that system
inputs and outputs are functionally related variables that,
when properly processed, allow the detection of faults in
the system. High performance, reduced costs and reduced
weight for these schemes make them desirable for
practical applications. A variety of solutions has been
considered in the technical literature and many issues
related to their application have been addressed.
Nevertheless, the practical implementation of analytical
redundancy based fault tolerance schemes is still very
limited. Fault tolerance algorithms are typically based on
Kalman filtering, neural networks, and fuzzy logic
techniques. The analytical complexity of these schemes
can be problematic, especially when compared to the
straightforward simplicity of physical redundancy. The
skepticism with which analytical redundancy is
sometimes received cannot be fully removed until a
trustful verification procedure to certify a given fault
detection scheme’s performance becomes available.

Testing procedures for analytical redundancy schemes
are often informal and inadequate. A typical testing
environment involves the simulation of the system
dynamics, along with the FD scheme. Faults are then
injected into the simulated system and the FD scheme
performance is assessed based on its promptness in
detecting faults, its sensitivity to incipient faults (small
size, slow varying faults), its completeness, as well as its
false alarm rates. These analyses provide an overall
measure of the scheme’s capabilities, but this is still far
from a formal verification of its functionality and
performance. A formal procedure needs to involve system
requirements specification, as well as verification and
validation  techniques spanning throughout the
development life cycle. Requirements specification plays
a fundamental role in the verification process since
verification is meaningless without requirements.

In this paper we focus on the specific validation
technique for the requirements of fault tolerant dynamic
systems, with particular attention on the validation of
feasibility of the requirements. Formal methods
contribute significantly in validating consistency and non-
ambiguity of requirements; however, there is no
guarantee that a set of well-formed consistent
requirements fully captures the desired behavior of the
system and its interaction with the environment. The
evaluation of the matching between “actual” functions
needed within the environment and the specified
requirements is often left to a subjective judgement. In
this paper, we demonstrate that the validation of the

requirements feasibility can be conducted in a more
objective and formal framework.

For fault tolerant systems, the validation of the
requirements. needs to include the assessment of
feasibility of the fault detection task. The degree of
“visibility” and, consequently, the detectability of a fault
in the system depends on the fault magnitude, on the
signal-to-noise ratio related to the fault, as well as on the
system dynamics.

The National Transportation Safety Board (NTSB)
database lists several accidents where the fault
detectability problem appears to be the critical issue. For
example, [9] is a report related to an accident that
occurred in 1983, involving a McDonnell DC-10-30
airplane. The aircraft experienced the separation of 50
inches of the right flap; however, “the incident was not
noticed until a local resident called to report the fallen
article”. Detection of such a fault would be desirable to
prevent a progressive deterioration of the surface with
potentially  catastrophic  consequences. However,
requiring to detect such a fault may be unrealistic if the
detection task is unfeasible for circumstances related to
the operational environment.

The purpose of the paper is to illustrate the scope of
the fault detectability problem and to present a condition
to assess fault detectability for analytical redundancy
based FD schemes. The proposed condition is formulated
in the frequency domain and is applicable to any system
whose dynamics is well approximated by a linear model.
Because of its analytical nature, it is a formal and
objective tool for feasibility validation of system
requirements for fault tolerant dynamic systems.

In Section 2, a brief overview of the validation process
is provided to better define the feasibility validation task
within the requirements specification process. Section 3
illustrates the fault detectability problem and provides the
detectability condition. Then, in Section 4, an application
of the detectability condition to the requirements of a
simple system is presented to show how “reasonable”
requirements can turn out to be unfeasible. We conclude
the paper with a summary, in Section 5.

2. Validation of requirements

Specification of requirements involves three main
steps: formulation of a high-level model of the system,
definition of the requirements, and validation of the
requirements. The first phase aims to capture the most
relevant functions of the system to build and its
interactions with the environment. Defining a conceptual




model of the system requires a thorough understanding of
the environment in which the system will operate and of
the functions that the system will provide [7]. Definition
of the requirements involves the description of the
..services that the system should provide, the constraints
under which it must operate and the desired performance
attributes. Validation aims to assess if the requirements
are complete, unambiguous, consistent, and realistic.

For high assurance systems, requirements validation is
a particular concern [16]. The terms “Verification” and
“Validation” are commonly used in software engineering
to mean two different types of analysis. Validation is
concerned with checking that the system will meet the
customer's actual needs, while verification is concerned
with whether the system is well-engineered.  The
distinction is clearer if one considers the role of a
specification.  Validation is the process of checking
whether the specification captures the customer's needs,
while verification is the process of checking that the
software meets the specification.

Validation of requirements is problematic because it
usually involves a subjective judgment of how well the
system under consideration addresses a real-world need.
In contrast, verification should be a relatively objective
process, in that if the various products and documents are
expressed precisely enough, no subjective judgments
should be needed [4]. The use of formal methods for
software specification is based on this observation.
However, formal methods provide little help with
requirements validation, because there is no guarantee
that a set of well-formed, consistent requirements actually
captures the desired behavior of the system and its
interaction with the environment.

The current state of practice in requirements validation
relies on a wide variety of validation techniques, ranging
from informal and formal inspection processes, to
detailed prototyping of user interfaces, and the use of
simulations [8]. Ideally, the requirements described in
the specification should be realistic, complete, consistent,
unambiguous, and testable. Sommerville [15] lists four
tasks in the requirements validation process:

1. Check if required functions satisfy user’s needs,

2. Check if requirements include all functions and
related constraints,

3. Check if requirements are unambiguous and
consistent (non-conflicting),

4. Check if functions and constraints specified by the
requirements are realistic.

It should be clear from this list of tasks that
requirements validation is a systems engineering activity.
A system level understanding of the purpose of the

system, its environment, and the available technology is
crucial. Prototyping and simulations can be used to assist
with the first two tasks, while formal analysis can assist
with the third. However, the last task, that of determining
whether the requirements are feasible, has been given
limited attention in the requirements engineering
community.

An analysis of requirements feasibility is especially
important for requirements that relate to safety and
reliability. If it cannot be determined ahead of time
whether the safety requirements for a system can feasibly
be met, a number of problems may result. Firstly, time
and effort can be wasted trying to meet the requirements.
Worse, a significant change to safety requirements late in
the lifecycle can be disastrous. Such a change will
generally mean a different approach to safety and
assurance, impacting a large number of design decisions
that have already been made.

3. Validation of FD systems requirements:
Fault detectability analysis

In this section an approach to feasibility validation of
requirements for FD schemes is presented. The FD
schemes considered are based on analytical redundancy.
In order to formulate a detectability condition, we need to
understand the analytical redundancy approach to fault
tolerance and the dynamics of how the detectability
problem arises.

Let us consider an actuator fault on an aircraft.
Modern aircraft have several control surfaces, which are
controlled either by the pilot or by the flight control
computer. The “actuating chain” consists of an
acrodynamic surface, an actuating unit, and linkages
along which a control command is sent from the cockpit
or the on-board computer. All of the components of the
actuating chain can be duplicated except the aerodynamic
surface. Therefore, if one of the actuating units fails, it
can be replaced with its backup. But if a problem occurs
with the aerodynamic surface, neither detection of the
fault, nor its accommodation is possible. Aircraft
accidents involving separation of aerodynamic surfaces
during flight are not unusual. [10], [11], and [12] are the
reports of three different aircraft that experienced partial
separation of one of the trailing edge flaps. In all three
cases the flight conditions were nominal until the descent
for approach and landing. After deflection of the flaps the
aircraft experienced rolling; the induced rolling moment
had to be compensated through ailerons deflections by the
pilot for the aircraft to land safely.




These examples not only illustrate the limitation of
physical redundancy, but also show a possible different
solution to detection and accommodation problems.

The separation of the flap caused a rolling moment
which was not consistent with"the airciaft inputs at that
particular instant of time. A clear understanding of the
aircraft dynamics and availability of roll angle and aileron
deflection is sufficient to detect the fault. This is the basis
of the analytical redundancy approach to the FD problem.
Furthermore, the aircraft control was regained through
aileron input by the pilot, implying that physical
redundancy is not needed when the fault does not
compromise the controllability property of the system,

To understand how the detectability problem may arise
let us consider two interesting accident reports by the
NTSB.

[12] states that on March 1997, 18 feet of the right
outboard flap separated from a Boeing 767-232 during
the airplane’s approach to the Dallas/Fort Worth
International Airport (DFW), Texas. The captain reported
that “take-off and departures were routine, as were all
aspects of the enroute phase of flight”. According to the
Digital Flight Data Recorder, after 1 minute and 54
seconds since deflection of the flaps the aircraft started
rolling to the right. By using a significant amount of left
aileron the first officer regained control and safely landed.

[9] reports that on September 1983, a McDonnell DC-
10-30 experienced the separation of 50 inches of the right
flap. The report follows saying that “the incident was not
noticed until a local resident called to report the fallen
article”.

In the first case, the magnitude of the fault was such
that the pilot clearly felt the separation of the surface. In
the second accident the effects of the fault were negligible
with respect to normal disturbances, and the problem
passed undetected. Detectability of the fault clearly
depends on the relationship between fault and
disturbances effect on the output of the system. More
specifically it depends on their ratio, so that what is
actually relevant in the detectability problem is the signal-
to-noise (S/N) ratio of the fault. Another key element that
is brought to light by the first accident is the relationship
between fault detectability and the state of the system (in
this case the maneuver of the aircraft). It is unlikely that
18 feet of the flap surface suddenly detach from the wing
without- any warning. It is plausible that the detachment
of the flap, or more specifically, the fracture of the bolts
which fastened the surface to the carriage support beam
(as reported in [12]) slowly propagated during flight and
erupted during approach when the flaps are fully loaded.

Unfortunately, the effects of an on-going fault on a flap
are not visible in straight-and-level flight, while they
become visible, and potentially dangerous, during
approach, when the flaps are deflected and the missed
surface induces a rolling moment on the aircraft.

So far we have considered the actual effects of the
fault on the system. However, analytical redundancy
based FD schemes use commanded inputs and measured
outputs, which may not reflect the actual response of the
system. If a fault occurs on one of the sensors, the actual
output of the system will be different from the sensor
output. This implies that the effects of the fauit could be
masked in the measured outputs even when they are
evident in the actual output of the system. The key
elements in this “game” of actual vs. measured outputs
are the system and fault dynamics.

Following the previous discussion, the concepts
summarized below are identified as the critical concepts
in the fault detectability problem.

Detectability is strictly related to the fault dynamics:
slow varying faults and low magnitude faults can be more
difficult to detect. Disturbances also play a major role.
Because of them, the functional relationships between
system inputs and outputs suffer an inherent uncertainty.
Analytical redundancy based FD algorithms depend on
these functional relationships to accomplish their task;
hence, disturbances are a key parameter in fauit
detectability assessment. The dynamics of the system
plays an important role as well. Depending on the system
dynamics, system outputs can mask or enhance
information related to the fault. Hence, the elements
involved in detectability assessment are the fault
dynamics, the system dynamics, and the disturbance
power spectrum.

The above examples and following argumentation
provide an intuitive understanding of the detectability
problem. The next step is to provide an objective
definition of the problem and an analysis tool that can be
used in the requirements validation process.

To specify meaningful requirements, detection
feasibility of the fault set of interest needs to be assessed.
In other words, the feasibility of the functions and
performance constraints required from the FD scheme
needs to be validated. Only a few papers in the technical
literature have focused on fault detectability and a
definition unanimously accepted by the technical
community is still missing. In [3] and [13] different
definitions of detectability are used, each referring to a
specific FD approach. However, the definition of
detectability is useful in the process of requirements



validation only if it is general, i.e., not specific to the
particular FD technique employed. The FD scheme
requirements, in fact, specify the desired functions of the
scheme without describing the details about their
implementation. The definition of detectability condition
as a system property that does not depend on the adopted
FD scheme has been recently proposed in [2]. This
condition can be summarized as follows:

“A fault on the i* component is detectable if a
Sfrequency band Aw exists, such that the power in that
band of the j* output, due to the fault signal, is larger
than the power due to disturbances".

In analytical terms, a fault on the i* component is
detectable if:

H{j €[0,m],Ao = (ml,mz)}/
[¥sG,, >[YsGo),,

where m is the number of outputs, Y,,(j@) is the Fourier

(M

transform of the output on the j/* sensor generated by a
fault on the i system component, ¥, .(jw) is the Fourier

transform of the output on the j* sensor generated by the
disturbance, and || . " ., denotes the power of the signal

in the frequency band Aw .

Eq. (1) is the condition needed to validate detection
capabilities required from an FD system. Its application
to any linear (or linearized) system is straightforward
since the power spectral densities related to faults and
disturbances can be easily computed separately and then
compared. By comparing spectral densities over all
frequencies and all outputs, it is possible to state whether
a frequency band A and an output y,(¢) exist such that

condition (1) is satisfied. Hence, it is possible to assess
the detectability characteristics of the fault.

The system linearity constraint imposed to the
application of Eq(l) is not as constrictive as it may
appear. The dynamics of a system like an aircraft is
described by a set of non-linear differential equations
resulting form the application of basic physic laws.
However, under certain flight conditions the aircraft
dynamics can be approximated by a linear system. In fact,
most of the design of flight control laws is based on this
linear model. Use of linearized models is common
practice in system engineering and it allows application
of condition (1).

In the following section a practical example is
provided where the linearized model of a non-linear

0
Rod angle o

Rod

" Angular sensor

Position sensor <'\ Motor output gear

/—> Disturbances
O A1

[(Rail j

F 5
L4

0 Cart position p

Figure 1. Inverted pendulum system.

system is used to validate the detection requirements for
an analytical redundant FD scheme.

4. Case study

Consider the inverted pendulum system in Figure 1.
This system consists of a cart and a rod. The cart slides on
a l-meter length rail driven by a motor, while the rod is
free to rotate around an axis perpendicular to the direction
of motion of the cart. The system is equipped with
sensors that measure cart position and rod angle. These
variables are used within a feedback loop to stabilize the
system around the unstable equilibrium condition with the
rod balanced in the vertical position. The system is
affected by disturbances whose statistical properties and
power spectra are known.

A simplified block diagram of the system is shown in
Figure 2 [1, 2]. G (s) represents the non-linear dynamics
of the inverted pendulum, K  and K, implement the
control law, H,(s)describes the effects of disturbances
within the system, r(t) is the reference signal for the
position of the cart, d(t) is the disturbance input, f(t) is
the fault input used to represent the occurrence of a fault
on the system outputs, x(t) is the system output (actual
output), y(t) is the sensor’s output (measured output).
Since y(t) represents the measurement of the system
output, y(t) and x(t) will assume the same values

(within the limit of the sensor accuracy) unless a fault
occurs on one of the sensors. The reference input to the
system is a square wave, so that the cart slides
periodically from one end of the rail to the other, keeping
the rod balanced within the capability of the control law
and in spite of the disturbance action.



—di) He) |

—if)» Kr Gofs)

o |

Figure 2. Block diagram of the
inverted pendulum system.

A fault on the cart position sensor may cause the
system to go beyond the rail ends, with possible damages
to the system. Thus, an FD scheme is needed. Assume
that the dynamics of the fault is exponential with a given
size and time constant within a known interval as
described by:

£(t)=All-e")
A = 01 (m), 1€[0,2] (sec) )

The following constraint could be the core of the
requirements specification for the FD system:

“ the FD system shall detect any fault belonging to the
class described by Eq. (2) “

From an engineering point of view the above
constraint seems reasonable. The fault class described by
Eq. (2) is realistic and a fault-size of 0./ m is considerable
when compared to the rail length of / m, so that the
effects of the fault are visible on the system. The
development of the requirements for such a system is
beyond the scope of this paper; nevertheless, it is
reasonable to assume that it is possible to specify a
complete set of requirements including the above
constraint. By using a formal language such requirements
could be expressed without ambiguity and
inconsistencies. What is left to be addressed is the
feasibility validation of the requirements.

In Figure 3, the reference input, the actual position of
the cart, and the output of the position sensor, are
displayed against time for two different faults. The faults
differ for the value of the time constant. In Figures 3a and
3b, the faults with time constants t=0 and t1=2 are

(sdlid linc)

Figure 3. Fault effects on position sensor output.

considered, respectively. Both faults occur at t=9 sec.
The output of the position sensor in absence of fault (no-
fault case) is also displayed on both graphs. Recall that,
in the absence of a fault, actual cart position and position
sensor output coincide.

By comparing the actual cart position with the output
of the position sensor in the no-fault case, it is clear that
the fault effects are visible for both faults. After the
occurrence of the fault, the cart shifts downward,
touching the end of the rail at t=157 sec.
Unfortunately, only measurements of system outputs are
available for the FD scheme, while the actual position of
the cart is not. In Figure 3a, the effects of the fault are
visible on the position sensor output. However, after a
short impulse at t=9 sec, the effects of the fault rapidly
disappear and, for t>10 sec., the position sensor output
in presence or absence of the fault almost coincide.
Nevertheless, the fault is still present as the actual
position of the cart demonstrates. Things deteriorate in
Figure 3b, where the output of the position sensor does
not show any effect of the fault.

From the above analysis it can be concluded that the
system has a remarkable weakness in providing fault-
related information for slow varying faults on the position
sensor. To quantify this weakness, fault detectability
analysis will be performed.



Figure 4 shows the spectral density of the sensors
output for a fault on the position sensor, along with the
power spectral density of the output component due to
disturbances, for two . different values of the time
constant. All spectral densiiies have been computed using
a linearized model of the non-linear dynamics G (s).
According to the detectability condition stated in Eq. (1),
the fault is detectable if a frequency interval exists, where
either the condition (3) or (4) is satisfied:

[Vt > [Yy (o] 3

N N
¥, (j0)| > Y ()| (4)
From the power spectral density diagrams, it is clear
that, for a value 7 = O of the time constant, the
detectability condition is satisfied since:
BT L2
¥ (G| >[ Yo (0)
Vo > Trad/sec

®)

On the other hand, a fault with time constant 7 = 2
reveals to be undetectable, since:

¥, (o) <|¥,(io)| Vo ©
0 ,
o
-
0%
T

10° 10° 10' ¢ 10 10 10’
rad'sec

Figure 4. Power spectral density of sensor outputs
for a fault on position sensor.

Y, (o) <|Yq(io) Vo ™

Any fault with time constant t>2 is masked by the
effects of disturbances. Therefore, the detectability
analysis has proved that the constraint stated at the
beginning of this section is not realistic, and any set of
requirements including that constraint is meaningless,
regardless of its completeness and consistency properties.

5. Conclusion

System requirements specification and their validation
play a key role in the development and the analysis of
high insurance applications. Unfortunately, the extent to
which system requirements meet the correctness,
completeness and feasibility criteria is often left to the
subjective judgement of the system analyst.

The assessment of requirements feasibility is a
problem whose solution largely depends on the
application field. We have focused on this problem
within the field of analytical redundancy based FD
schemes for dynamic systems. This study provides an
analytical condition that allows assessing the feasibility of
the fault detection task in systems whose dynamics can be
modeled by a set of differential equations. The
detectability condition captures the three key elements in
assessment of fault detection feasibility: the dynamics of
the fault, the impact of system disturbances on the
functional relationship between system inputs and
outputs, and the dynamics of the system.

The detectability condition does not directly provide a
basis for the implementation of a FD system. However, it
highlights the strengths and weaknesses of the system in
propagating the effects of the fault throughout its output
as a function of frequency. Hence, it provides
information on which frequency regions are more suitable
for the detection of a fault. Moreover, the detectability
condition clearly states when a system is incapable of
detecting fault propagation effects so that an approach
other than analytical redundancy can be adopted for fault
detection purposes.

Fault detectability analysis is an important step in
requirements validation of FD systems. The suggested
fault detectability condition provides an objective
assessment tool within this framework. This has been
demonstrated by applying the detectability condition in a
case study involving the requirements for the FD scheme
for an inverted pendulum system.




Acknowledgement

Partial support for research reported in the paper has
been provided by DEPSCOR/AFOSR grant F49620-98-1-
0136, NASA Ames grant NAG 2-1158, and NASA
Dryden grant NAG 4-163 (administered by the Instituté
for Software Research).

References

[1] D. Del Gobbo, “Sensor Failure Detection and
Identification using Extended Kalman Filtering”,
Master thesis, Department of Mechanical and
Aerospace Engineering, West Virginia University,
1998.

2] D. Del Gobbo and M. R. Napolitano, “Issues in Fault
Detectability for Dynamic Systems”, submitted for
presentation.

(3] X. Ding, P.M. Frank and L. Guo, “An approach to
residual generator and evaluator design and
synthesis”, IFAC 12™ Triennial World Congress, pp.
383-86,1993.

[4] S. M. Easterbrook, “The Role of Independent V&V
in Upstream Software Development Processes,”

Journal of Integrated Design and Process Science,
vol. 2, pp. 37-46, 1998.

[5] P.M. Frank, "Fault Diagnosis in Dynamic Systems
Using Analytical and Knowledge-based
Redundancy-A Survey and Some New Results",
Automatica, Vol. 26, No. 3, pp. 459-474, 1990.

[6] R. Isermann, "Process Fault Detection Based on
Modeling and Estimation Methods-A Survey”,
Automatica, Vol. 20, No. 4, pp. 387-404, 1984.

[7]1 M. Jackson, “The Meaning of Requirements,” Annals
of Software Engineering, vol. 3, pp. 5-21, 1997.

[8] M. Lubars, C. Potts, and C. Richter, “A Review of
the State of the Practice in Requirements Modeling,”
IEEE International Symposium on Requirements
Engineering, San Diego, CA, IEEE Computer
Society Press, pp. 2-14.

{91 NTSB final report, Accident no. MIA83IA218,
September 1983.

[I0]NTSB final report, Accident -no. CHI93IA354,
September 1993.

[11]NTSB final report, Accident no. NYC96IA169,
August 1996.

[12]NTSB final report, Accident no. FTW971A144,

March 1997.

[13]M. Nyberg and L. Nielsen, “Parity functions as

universal residual generators and tool for fault
detectability analysis”, 36" IEEE Conference on
Decision and Control, vol. 5; pp.4483-9.

[14]R. Patton, P. Frank and R. Clark, "Fault Diagnosis in
Dynamic Systems, Theory and Applications",
Prentice Hall, 1989.

[15)Sommerville, “Software Engineering”, 3% Ed.,
Addison Wesley, 1989.

[16]D. R. Wallace and R. U. Fujii, “Software Verification
and Validation: Its Role in Computer Assurance and
Its Relationship with Software Project Management
Standards”, NIST Computer Systems Laboratory,
Gaithersburg, MD, NIST Special Publication 500-
165, 1989.

[17]N. G. Leveson, “Safeware: System Safety and
Computers”, Addison-Wesley, 1995




Appendix A.5

Authors:
Napolitano, M.R., Younghwan, A., Seanor, B., Pispistos, S., Martinelli, D.

Title:

“Application of a Neural Sensor Validation Scheme to Actual Boeing B737
Flight data”

Proceedings of the ‘99 AIAA Guidance Navigation & Control Conference, Paper 99-
4236, Portland, OR, August 1999



Application of a Neural Sensor Validation Scheme to Actual Boeing 737 Flight Data
Marcello Napolitano™!, Younghwan An'*, Brad Seanor ™, Stelios Pispitsos ™
*Aviation Operation and Safety Center, Department of Mechanical and Aerospace Engineering
David Martinelli®"
YStaggers Transportation Center, Department of Civil and Environmental Engineering S
West Virginia University, Morgantown, WV 26506/6106

Abstract

Detection, identification, and accommodation of
sensor failures can be a challenging task for complex
dynamic systems such as aircraft. Classic state
estimation tools based on observers and/or Kalman
filters as well as alternative methods using on-line
learning approximators have been proposed in the
technical literature to address this problem.

This paper presents the results of a neural
network based scheme to provide fault tolerance
following sensor failures. Results from the
application of the methodology to actual flight data
of the B737 aircraft are presented. Particularly, the
paper compares the performance of two different
detection schemes within the SFDIA architecture
applied to failures of different aircraft sensors. The
non-nominal conditions are obtained by artificially
imposing different failures on nominal flight data.
The scheme features ‘n+1’ on-line learning neural
approximators where ‘n’ is the number of sensors for
which a fault tolerance scheme is desired.

_The overall results confirm the interesting
capabilities of neural approximators for this
application and show the improvements achievable
with the refined scheme in dealing with the most
conservative case of soft failure.

Symbols
a = acceleration, g’s
A = aileron
CAS = Calibrated Air Speed, ft/sec
DNN = Decentralized Neural Network
E = elevator
h = altitude. ft
k = discrete time index
LEF = Leading Edge Flaps
LES = Leading Edge Slats
MNN = Main Neural Network
N, = percentage of maximum fan RPM
nom = nominal conditions
QEE = Quaderatic Estimation Error
R =rudder
TEF = Trailing Edge Flaps
8 = deflection of control surfaces, deg
{ = mean
o = variance
6 = Euler pitch angle, deg

¢ = Euler bank angle
v = Euler heading angle

Introduction

Recent aviation catastrophic events have renewed
an interest toward the design of fault tolerant flight
control systems. While not a single aircraft with built
in fault tolerance capabilities has been yet designed
and tested, several efforts are undergoing to
demonstrate the capabilities of different fault tolerant
schemes for both military and commercial aviation.
On a different side of the industry, low weight,
unmanned aerial vehicles and spacecraft have been
recently introduced for remote sensing for both
scientific and military applications. Clearly a fault
tolerant control system is very desirable for these
unmanned aircraft and spacecraft.

A full fault tolerant flight control system is, in
general, required to accomplish failure detection,
identification, and accommodation for sensor and
actuator failures (SFDIA and AFDIA). This paper
focuses on the sensor failure problem and describes
the results of the application of a neural network-
based SFDIA scheme.

Although basic concepts of Neural Network (NN)
theory were introduced in the 40s and 50s, it is only
in the last decade that applications of NNs to all
engineering fields has populated the technical
literature. During an initial phase NNs have been
applied to pattern recognition and classification. In
more recent years, NNs have been used as
approximators and/or controllers to model and/or
control complex non-linear systems due to their
approximation and adaptation capabilities'.

Within a larger picture multi-layer neural
networks can be considered as one class of
approximators. In this context the words ‘neural
approximator’ and ‘neural estimator’ are used
interchangeably.  Other types of approximators
include polynomials. spline functions. rational
functions, as well as a different class of NNs. the
radial basis function NNs. An important effort
toward creating a unified approximation theory
including all these different classes was recently
undertaken™. The need for such a unified approach
is clear given the virtually infinite number of degrees
of freedom in the selection of the approximator



architecture. For example, after having selected a
multi-layer neural network among all the classes of
approximators, consider the dilemma of choosing the
number of inputs, the number of layers, the number
of neurons per layer(s) as well as selecting a learning
rate and/or momentum coefficient. Given the lack of
systematic procedures for an optimal selection for the
class and the topology of an approximator, a unified
theoretical approach is needed. Furthermore, within
this unified approach, a systematic procedure for
creating non-linear approximators as well as stable
learning schemes using Lyapunov’s theory has been
introduced™® .

A partial list of interesting neural properties
includes :

- applicability to MIMO non-linear systems with
robustness to noise;

- parallel distributed processing and hardware
implementation;

- learning (off-line, with recorded or simulated data,
or on-line).

It is this last property which is particularly
appealing for SFDIA purposes. In fact, classic
SFDIA methods, and, at large, general FDI methods,
have traditionally been based on linear modeling
which clearly restricts the type of failures and failure
scenarios to a limited subset. Other points of concemn
for the application of linear FDI and SFDIA tools to a
real-life problem are their robustness to modeling
discrepancies between the actual system and the filter
model as well as their robustness to non white and/or
biased residuals.

The paper presents the results of the application
of a SFDIA scheme based on neural estimators
applied to real data of a B737/300 aircraft. The data
were relative to a flight test at nominal conditions.
The failures are simulated through imposition of
failure models on the real data; since the available
data arc at nominal conditions one can compare the
prediction of the neural estimators with the real data
to assess the overall effectiveness of the SFDIA
scheme. The paper is structured as it follows. The
next section reviews critical SFDIA issues while the
following section briefly outlines the SFDIA scheme.
A following section describes the available data and
it summarizes the selected topologies of the neural
estimators of the scheme. Another section describes
the simulated failures. The results of the statistics of
the on-line learning as well as the results of the
failures simulation are described in another section.
A final section concludes the paper.

Issues in sensor failure tolerance
There are two conceptually different approach to
the SFDIA problem : physical and analvtical
redundancy.  Traditional flight control systems

deploy triple or quadruple physical redundancy in
their network of sensors to achieve the level of
reliability necessary for the aircraft certification.
Typical physical redundancy. SFDIA techniques are
based on voting and mid-value selection schemes. It
is clear that there are weight, power, size and
economic penalties associated with a physical
redundancy approach to the SFDIA problem.

Most of the current research activities on SFDIA
focus on the use of analytical redundancy techniques.
These techniques feature continuous monitoring of
the measurements from the sensors. At nominal
conditions these signals follow some known patterns
with a certain degree of uncertainty due to the
presence of system and measurement noises.
However, when sensor failures occur, the observable
outputs deviate from the predicted values calculated
on-line or off-line from estimation schemes
generating a residual. A sensor failure can be
declared when the associated residual exceeds, for a
single or for multiple time instants, a certain
numerical threshold.

A partial list of analytical SFDIA techniques
includes Generalized Likelihood Ratio (GLR),
Multiple Model Kalman Filtering (MMKF),
Extended Kalman Filtering and Iterative Extended
Kalman Filtering (EKF and [EKF), Sequential
Probability Likelihood Ratio Test (SPLRT), and
Generalized Likelihood Test/Maximum Likelihood
Detector (GLT/MLD)*".

Although the capabilities of the techniques above
are very appealing, there are some important issues
related to the application of these techniques in terms
of robustness to non-linearities, low signal-to-noise
ratios (S/N), and modeling discrepancies between the
actual system and the filter model>”. In addition,
there is an even more critical issue: the FDI
techniques listed above are based on the use of
Kalman filters which are assumed to be of the same
order as the actual system. The detection task relies
on residuals being, at nominal conditions, a white and
unbiased sequence. However, in real-life conditions,
the filter residuals may be non-white and/or biased
dueto:

- occurrence of a sensor failure;

- bad measurement and/or intermittent failure
(statistical outliers, data gaps, temporary loss of
signals);

- use of a reduced-order filter. because of constraints
on available computational power.

As a result, any SFDIA scheme which does not
acknowledge the last two events will be subject to a
high level of false alarm rates and will, therefore, be
unacceptable for real life applications.

The issues outlined above can be addressed if one
can take advantage of a SFDIA scheme with the



capabilities of learning from on-line data at non-
linear conditions®? and, furthermore, capable of
dealing with unanticipated sensor failures of non-
trivial nature. such as the large class of soft-failures.
Although the need for non-linear modeling methods
to be used within a SFDIA scheme was clear for

many years'® several problems in the formulation of .

suitable non-linear approximators and the on-line
implementation within the available computational
resources have not allowed their use for SFDIA
purposes.

Only recently, starting from the proofed
capability of a single hidden layer feed-forward NN
with supervised learning to map any non-linear
systems - once enough training is allowed'"'? -
promising results toward assessing the stability of the
neural learning have been obtained using Lyapunov’s
theory *'3,

The first author believes that the problems
outlined above are only a subset of a wider problems,
that is the lack of formal system and software
requirements for the development of SFDIA
algorithms, or any other algorithm for fault tolerance.
Additionally, the use of on-line learning for the
neural approximators of the SFDIA scheme implies
that the behavior of the system with the SFDIA might
vary during its operational usage. Therefore, an
integral approach to verification and validation of
neural SFDIA schemes has to address the following
concerns :

- Specification Assurance to System and Software
Requirements (that is, build the right thing)

- Design and Implementation Assurance (that is.
build the thing right)

- Reliability Assessment and Reliability Monitoring
Methods (that is, quantify assurance).

Some may argue that this is a minor issue and/or
a pure computer science or software issue;
nevertheless, the first author believes that it is a
Flight  Control/Computer ~ Science  community
problem and, furthermore, only when the
requirements issue will be fully addressed, the
validation and verification of neural SFDIA schemes
will be possible leading the way to actual
implementation of these schemes to flight control
systems. Ref.[14] shows preliminary results by the
first author research group in addressing the system
requirements problem for the SFDIA problem.

Reviews of the NN-based SFDIA scheme
As stated in the section above. the advantage of a
NN-based SFDIA scheme is that it capitalizes on the
capabilities of using on-line learning. The NN-based
SFDIA scheme used in this effort is shown with
details in Ref.[15-17]. The advantages of on-line
learning within a SFDIA scheme vs. the general

robustness of a SFDIA scheme based on Kalman
filters is described with details in Ref.[15].

The Extended Back Propagation (EBP) algorithm
has been used by the authors for the on-line learning’;
this algorithm has been selected for its performance
in terms of learning speed, convergence time, and
stability when compared to the conventional BP
algorithm.

The SFDIA scheme used for this study is based
on the observability of an aircraft system. It consists
of a main NN (MNN) and a set of 'n' decentralized
NNs (DNNs), where 'n' is the number of the sensors
in the flight control system for which a SFDIA is
desired. The outputs of the MNN replicate, through
on-line prediction, the actual measurements from the
‘n' sensors with one time instant delay, that is
prediction of the state at time 'k' using measurements
from 'k-1' to 'k-p' to be compared with the actual
measurement at time 'k’. For the i-th of the 'n' DNNs
the output is the on-line prediction of the
measurement of the i-th sensor, that is, again, the
prediction of the state at time 'k' using measurements
from 'k-1' to 'k-p' to be compared with the actual
measurement at time 'k’. The inputs to the i-th DNN
are the measurements from any number to up 'n-1'
sensors, that is all the 'n' sensors excluding the i-th .
An estimation error exceeding at a certain time
instant a certain threshold at the MMN's output
provides a detection while an estimation error
exceeding at the same time instant another threshold
at the i-th DNN provides the identification. Then, the
accommodation is achieved by replacing the i-th
sensor with the output of the i-th DNN itself which,
at the same time, is no longer in a learning mode and
has a frozen numerical architecture. To allow the
MNN to still be able to provide detection-until the
end of the flight, the output of the i-th DNN also
replaces the measurement of the i-th sensor as input
to the MNN.

This 'double trigger' approach, on the same
hierarchical level, has been introduced for to reduce
the rate of false alarms in the FDI process. Several
options can be added to this scheme to add robustness
to bad measurements and/or intermittent failures. For
example, a lower and a higher threshold level can be
selected for the MNN and the DNNs. If a lower
threshold for the i-th DNN is exceeded once, the
status of the corresponding i-th sensor is declared
suspect and the numerical architecture of the i-th
DNN is not updated. Should this status persist for a
certain number of time instants and/or should the
estimation error in successive time instants exceed
the higher threshold, then the sensor is declared failed
and is, therefore, replaced by the i-th DNN.

If the on-line computation burden is an issue. a
solution would be to update the numerical




architecture of the DNNs at a lower frequency than
the sensor measurement rate. This clearly increases
the learning time; however, the learning can take
place over a number of flights. Additional features of
this scheme include the capability of handling
multiple sensor failures, as long as they do not occur
simultaneously, and intermittent failures. Figure 1
shows a block diagram for the SFDIA process for a
system with three sensors with a simulated failure for
sensor #1. A functional block diagram is instead
shown in Figure 2.

SFDIA for simulated failures using B-737 data

Based on their size, sensor failures can be
classified as :

- hard-over failures, catastrophic but easy to detect;
-soft failures, difficult to detect and, if
uncompensated, potentially catastrophic.

In modern flight control systems Built-In-Testing
(BIT) on each sensor, in lieu of FDI schemes, is
typically used to detect and identify hard-over sensor
failures. Therefore, this type of failure is less critical
from a detection point of view. Soft failures are
clearly more subtle and, potentially, more dangerous
since they are not very detectable. These failures
may not degrade the system performance for some
time, however, if left uncompensated, can lead the
system to critical and, eventually, catastrophic
conditions.

In dealing with soft failures the following points
need to be evaluated :

- type of soft failures (small bias, slow-drifting,
combination of both);

- observability of the effect of the failures from the
available measurements;

- amount of time required to accumulate enough
measurements to detect the occurrence of the failure
in the presence of noise;

- uniqueness of the failure and degree of
distinguishability from other types of failures for
unambiguous detection and isolation.

The SFDIA scheme reviewed in the section above
has been tested on actual B737 data. Only simulated
failures for the accelerometers and the Euler angles
sensors were considered for this paper; thus the
SFDIA scheme consists of | MNN and 6 DNNs. A
complete set of dynamic data for a flight testing flight
of a B737 was used: the data was provided by the
NTSB for a different type of research effort'® but
proofed to be excellent data for the purpose of the
this study. The time histories received from the
NTSB from an extended FDR equipped B737-300
consisted of the following parameters:

ea ¢, Y, ay,, 3y, ay, CAS~ Al[itl‘lde~ N], 6[39 6/\» 5Rs BTEFa
Sl.EFv 5LES

Figure 3 shows an altitude and airspeed profile of
the data. The Boeing 737-300 features on each wing
2 trailing edge flaps, 2 leading edge flaps, and 2
leading  edge slats. The deflections of the leading
edge surfaces are scheduled with the deflection of the
trailing edge flaps and the trailing edge flaps are
scheduled as a function of airspeed. The aircraft also
features flight spoilers and ground spoilers which
were not activated during these flight tests.

The only problem with the given data is that the
sampling frequencies varied greatly among the
different parameters from 1 samples/sec for N, to 8
samples/sec for the linear accelerations and the Euler
angles. Therefore, prior to any neural processing, the
data underwent a cubic interpolation in order to have
the same sampling frequency of 8 samples/sec for
each time history. A 5™ order digital Butterworth
filter was also applied to the data to reduce the noise
level. The cut-off frequency was selected to avoid
removing significant portions of the aircraft rigid
body dynamics; a cut-off frequency of 5 rad/sec was
used. A sample of the raw and filtered data is shown
in Figure 4.

The next issue was the selection of the
architecture for the MNN and DNNs. As it was
mentioned above, there are several degrees of
freedom in the selection of the neural architecture.
Overall this was considered a secondary problem; the
conclusions from Refs.[15,16] provided general
guidelines for selecting the MNN and DNNs
topologies. Therefore, architectures with a single
hidden layer, with a number of hidden neurons
slightly higher than the number of input data, with
low learning rates, were selected. They are shown in
Table 1.

The set of data covered 14,000 sec. of flight.
Excluding the take-off, climbing, descent, and
landing phases. there were approximately 10,500 sec.
of maneuvered flight. The training for the MNN and
the DNNs was conducted using 8,000 sec. of data
with the remaining 2,500 sec. being used for the
testing of the SFDIA scheme. The training consisted
of submitting the 8,000 sec. training data to the MNN
and DNNs for a total of 300 and 500 iterations,
respectively. The training was monitored by
“freezing” the numerical architecture of each of the
NNs every 10 iterations and by letting the “frozen”
NNs go through the first 500 sec. of testing data. The
following classical statistical parameters for the
estimation error were introduced for the MNN and
each of the DNNs:

N
_Z (X actual — X NN )
Histerrx = = N (l)




b4

™

[(Xaclual - XNN ) = Histerrx ]2

’

!

U'ZExl.eer = N (2)

where X indicates any of the parameters for which a
SFDIA is desired (that is linear accelerations and
Euler angles); the subscript NN indicated any of the
DNNs or MNN outputs. N is instead the total number
of data points for the testing phase (N=500 x 8
samples/sec = 4,000). Figures 5 and 6 show the
statistical trend of the DNNs estimation error for 300
or 500 iterations in terms of mean and variance.
Following the simulated on-line learning of the
MNN and the DNNs, the next task was to evaluate
the overall SFDIA performance. The following
capabilities are critical :
- failure detectability and false alarm rate for SFDI
purpose;
- estimation error for SFA purposes.
In general a sensor failure can be modeled as :

X[ailure,l = ’Ynom,i £ Mni (3)

where n; is the direction vector for the i-th faulty
sensor, and M is the magnitude of the failure. Based
on the time-dependency failures can be classified
within step-type and ramp-type failures. Therefore
we would have :

- for step-type sensor failures :

n; =1 for t>tg
- for ramp-type sensor failure :
_ (t=ty)

= fort“<t<t[-_,
(tra—ty))

1
n; =1 for t>tp

where t; and tp indicate the initial and final time
instant of ramp-type sensor failure, respectively.
Both types of failures were considered in this study.
Particularly, based on their magnitude, the following
sensor failures were considered based on the above
formula :
Failure #1: Large bias (0.5 g for acceleration - 5 deg
for angles);
Failure #2: Small bias (0.2 g for acceleration - 2 deg
for angles);
Failure #3: Large bias (0.5 g for acceleration
for angles) with fast ramp transient (0.5 sec);
Failure #4: Small bas (0.2 g for acceleration - 2 deg
for angles) with fast ramp transient (0.5 sec);
Failure #5: Large bias (0.5 g for acceleration - 5 deg
for angles) with slow ramp transient (5 sec);
Failure #6: Small bias (0.2 g for acceleration - 2 deg
for angles) with slow ramp transient (5 sec).

Failures #1,#2 represent step-type failures while
Failures #3 - #6 represent soft-type failures. In the
original SFDIA scheme'>'” the tollowing quadratic

5 deg

parameter for the MNN was monitored for SFD
purposes :

! . ,
OFE, _ypuy (k) =.% CHIGES SIICINC)

where ‘/ is the number of DNNs (in this case /=6)
and the symbol ‘*’ denotes the estimate of the j-th
parameter X (either an acceleration or a Euler angle)
from the MNN. However, the use of this parameter
did not provide acceptable performance when dealing
with soft type sensor failures. After a detailed
analysis it was found that better SFD performances in
dealing with soft-failures were obtained by
monitoring the following quadratic parameter :

| R A
QEE; ppw (k) = 3 Zl(Xj—I)NN (k)= X j_ppoy ()
i
(5)

where the first and the second term in the parenthesis
indicate the estimate of the j-th parameter X from the
the j-th DNN and from the MNN respectively. An
explanation for the problems encountered using the
QEE (.mn~ parameter for SFD purposes as well as a
reason for the improvements experienced with the
QEE 2.vnn in dealing with soft failures was found to
be the following. Consider, for example, the failure
of the sensor measuring the Euler angle 8 and let us
suppose to monitor the actual measurement of 9 as
well as its estimate from the MNN and the 6-DNN.
At nominal conditions, at time step k the 8 estimate
from the MNN and the 6-DNN are supposed to
emulate the actual output from the 8 sensor. In the
event of a ramp-type 6 sensor failure the estimate of
9 from the MNN tends to resemble the corrupted
signal from the sensor. In fact, since the ©
measurement is included as an input parameter in the
MNN (see Table 1), the MNN is updated for at least
one instant with the failed 8 sensor value during the
on-line learning. As a result, the parameter QEE,.
mny does not provide an accurate detection because
the difference between the measurement from the 6
failed sensor and the estimate of 0 from the MNN is
relatively small despite the sensor failure. Instead,
the estimate of © from the 8-DNN follows the
nominal value of 8 relatively well. This is because
the 8-DNN does not receive, as input data, the
measurements from the failed sensor, as also shown
in Table 1. The inconsistency between the estimates
of © from the MNN and thc 0-DNN generates.
therefore, the peak of the parameter QEE,.\uy which
is critical for SFD purposes. This problem does not
occur for step-type sensor failures, for which higher
peaks for QEE, ynn are induced instead.

In general, it can be said that the use of the QEE,.
snn detection criterion provides better performance
for step-type sensor failures whereas the QEE 1ynn



detection criterion performs better for ramp-type
sensor failures. The SFDIA scheme also uses the
following sensor failure detection (SFD) parameter
for monitoring the on-line learning of the DNNss :

oL 1 . o
QEE ;- pwy =7 (X, () =X jpy *)? . _(6)

For sensor failure accommodation(SFA) purposes
the following parameters for the estimation error are
evaluated:

1 Mo

#AEE,_D‘VN = NR kZI(Xj—twm (k)—/{/j—[)NN (k)) (7)
es k=

O'ZAEI:’,_D‘,\;\- =
1 N . 2
Z[(X_j—nom (k) - Xj—DNN (k)) - /1,41:‘1;'/_0“ ]—
Res k=l
(8)
where the subscript ‘AEE’ indicated
‘Accommodation  Estimation Error’ and Ng,
indicates the residual number of time steps from the
instant when the failure of the sensor is declared to
the end of the simulation.

Results of the SFDIA applied to the B-737 data

For simplicity purposes only the results relative to
the simulated sensor failures for the pitch angle
sensor and for the normal accelerometer are
presented. The occurrence of the different sensor
failures defined in the previous section was
simulated. The results in terms of sensor failure
detection (SFD) and sensor failure identification
(SFI) are summarized in Table 2. It is clear that the
QEE .unn detection parameter does not perform well
in the event of soft failures and/or ramp type failures.
Vice versa, the QEE, v criteria is less effective for
hard failures and/or large bias but it provides a
reliable SFD in presence of soft failures and/or ramp
type failures.  This behavior suggests that a
combination of the QEEyny and the QEE,y .y
criteria provides desirable levels of SFD and SFI
performance.

Clearly, as for any other SFDIA scheme, the
SFDIA performance are also function of other
important factors, that is the threshold(s) used for the
SFD task in the MNN and the thresholds used for the
SFI task in the DNNs. The selection of these
thresholds also affects the false alarm/detection ratio,
a critical performance of the SFDIA scheme™”.

A visualization of the effects of a missed
detection for failure type #6 (the most conservative
case — a small bias with a slow ramp transient) for the
normal accelerometer is shown in Figures 7-9. In
fact, using the QEE,.\ny detection criteria, the failure
is never detected since the estimation error never
exceeds the SFD threshold, as shown in Figure 7.
Furthermore, a close look at Figure 8 reveals the

occurrence of an undesirable event when using the
QEE | .mnn criteria.  Since the SFD using the QEE,.
mnn criteria is not successful (Figure 7) the a,-DNN
learning is never halted and, therefore, the a,-DNN

tends to emulate the “new” dynamics through ‘the < -

measurements from the failed normal accelerometer
(Figure 8). A different behavior is exhibited in
Figures 7,8 when the combination of the QEE, yn
and the QEE,.un criteria is used instead. Since the
S/N ratio is lower, higher SFD thresholds are
selected. When this threshold is exceeded,
immediately the a,-DNN learning is halted; therefore,
the a,-DNN will not try to learn the new dynamics
explaining why the a,-DNN quadratic error using the
QEE .mwn and the QEE,uwn detection criteria is
higher.

The results of the accommodation for the
accelerometer failure are shown in Figure 9; it can be
seen that a,-DNN estimate after using the QEE.mnn
and the QEE,.ynn detection criteria is closer to the
nominal a, values than the a,-DNN estimate after
using the QEE,.ynn detection criteria.

The SFDIA trends described above are even more
clear in the event of a © sensor failure, documented in
Figures 10-12, once again relative to the worst case
scenario of a soft failure with a slow ramp. As for
the a, failure case, the use of the QEE,uw for
detection does not allow the SFD (Figure 10) and,
therefore, the 8-DNN tends to learn the “new”
dynamics, causing the 8-DNN quadratic error to
decrease after some learning. On the other side,
using combination of QEE . \ynn and QEE,unn for
detection, the 0 sensor failure is detected (Figure 10)
and the 8-DNN learning is halted (Figure 11). The
difference in behavior between the use of QEE, yn
only and the use of QEE,.ynn and QEE,.ynn is then
extended to the accommodation results in Figure 12,
which clearly shows the effects of the missed
detection using QEE,_.uwn. In fact, the 8-DNN
estimates with QEE .\ tend, with time, to replicate
the outputs of the failed 6 sensor; on the contrary, the
8-DNN with QEE,.\nn and QEE, v closely follw
the nominal 6 values, that is the actual recorded 6
values.

Conclusions

The paper has presented the results of the
application of a neural sensor failure detection.
identification, and accommodation (SFDIA) scheme
to actual flight data of a B737-300 aircraft. The
aircraft flight control system is assumed to be without
physical redundancy in the sensors. The study
confirms the capabilities of neural networks as on-
line approximators. Different sensor failures were
“injected” on the top of nominal flight data with



emphasis on the analysis of soft failures, whose
detection and identification is more challenging. As
for any other FDI schemes, the effectiveness and the
performance of this neural scheme are functions of
the selection of the detection and jdentification
thresholds. In particular, the paper has emphasized
the performance improvements, in the presence of
soft failures, achievable with a modified detection
scheme featuring an error signal originating from a
main neural network (MNN) -~ which provides a
centralized sensor failure detection — and from a set
of decentralized neural networks (DNNs) — which
provide a confirmation of the detection, a positive
identification, followed by the accommodation.

Acknowledgements
Partial supports for the authors were provided by
a NASA Ames Grant and a DoD/EPSCOR Grant.

References
I - K.S. Narendra, and K. Partasarathy,
“Identification and Control of Dynamical Systems
Using Neural Networks”, IEEE Transactions on
Neural Networks, Vol 1, No.1, 1990
2 - M. Polycarpou, “On-Line Approximators for
Nonlinear System Identification A Unified
Approach”, Control and Dynamic System Series
3 - M. Polycarpou, A.T. Vemuri, “Learing
Methodology ~ for  Failure  Detection  and
Accommodation”, IEEE Control Systems Magazine,
Vol. 15, No. 3, June 1995, pp. 16-24
4 - AS. Willsky, “A Survey of Several Failure
Detection Methods”, Automatica. Vol 12, No 6, pp.
601-611, 1976
5 - P.M. Frank, “Fault Diagnosis in Dynamic
Systems Using Analytical and Knowledge-Based
Redundancy: A Survey and Some New Results”,
Automatica, vol 26, pp.459-474, 1990
6 - T. Kerr, “False Alarm and Correct Detection
Probabilities Over a Time Interval for Restricted
Classes of Failure Detection Algorithms”, IEEE
Transactions on Information Theory, vol. 20, no 4,
pp.619, 1982
7 - R.J. Patton, P.M. Frank, and R.N. Clark, “Fault
Diagnosis in Dynamic Systems : Theory and
Applications ", Prentice Hall, 1989
8 - M. Polycarpou, P.A. loannou, “Stable Non-Linear
System Identification Using Neural Networks
Models”, G. Beckey and K. Goldberg Editions.
Neural Networks in Robotics, pp. 147-164, Kluwer
Academic Publishers, 1993
9 - M. Napolitano, C. I. Chen, S. Naylor, “Aircraft
failure Detection, and Identification Using Neural
Networks”, AIAA Journal of Guidance, Control and
Dynamics, Vol. 16, No. 6, 1003, pp.999-1009

10 - J. Gertler, “Survey of Model-Based Failure
Detection and Isolation in Complex Plants”, IEEE
Control Systems Magazine, Vol. 8, No. 3, 1988,
pp.3-11.

11 - G. Cybenko, “Approximation by Superposition
of Sigmoidal Functions”, Math. Contr. Signals and
Syst., Vol. 2, No. 4, 1989, pp. 303-309

12 - K. Homik, M. Stinchcombe, H. White
“Multilayer Feedforward Networks Are Universal
Approximators”, Neural Networks, Vol.2, 1989, pp.
359-366 :

13 - K.S. Narendra, A.N. Annaswamy, “Stable
Adaptive Systems”, Prentice Hall, 1989

14 - D. Del Gobbo, M.R. Napolitano, M.R.., J.
Callahan, B. Cukic, “Experience in Developing
System Requirements Specification for a Sensor
Failure Detection and Identification Scheme”,
Proceedings of the 3" IEEE High-Assurance Systems
Engineering  Symposium, = Washington = DC,
November 1998

15 - M.R. Napolitano, D.A. Windon, J.L. Casanova,
G. Silvestri, M. Innocenti, "Kalman Filter and Neural
Network Approaches for Sensor Validation in Flight
Control  Systems", [EEE Control  Systems
Technology, Volume 6, Number 5, pp. 596,
September 1998

16 - M.R. Napolitano, C. Neppach, V. Casdorph, S.
Naylor, M. Innocenti, G. Silvestri, "Sensor Failure
Detection , Identification and Accommodation in a
System Without Sensors Redundancy", AIAA
Journal of Control and Dynamics, Vol. 18, Number 6
, Nov-Dec 95, pp. 1280-1286

17 - M.R. Napolitano, G. Silvestri, D.A. Windon, J.L.
Casanova, M. Innocenti, "Sensor Validation Using
Hardware-Based  On-Line  Learning  Neural
Networks", IEEE Transactions on Aerospace and
Electronic Systems, Volume 34, Number 2, April
1998, pg. 456

18 - M.R. Napolitano, R.D. Martinelli, D.A. Windon,
J.L. Casanova “Extending Current Flight Data
Recorders Capabilities : The Virtual Flight Data
Recorder”, AIAA-Paper 97-3538. Proceedings of the
AIAA ‘97 Guidance Navigation and Control
Conference, New Orleans, August 1997.




Table 1 Selected architectures for the MNN and the DNNs of the SFDIA

MNN 0-DNN a,-DNN

Input parameters: Lo Loow Lo
Data pattern: 3 3 3

Total number of inputs: 15 12 12
Number of hidden layers: 1 1 1
Number of hidden layer neurons: 20 15 15
Number of outputs: 6 1 1

(0,0,9,4,,4,,4,) (8) (a,)

Initial learning rates: 0.01 0.01 0.001
Initial momentum coefficients: 0.1 0.1 0.1

IMNN = e,d% ulsan ’axs ay 98g3 SA’ SR, 8F3 PJ]

I
|

6-DNN

an-DNN

=an’ ax’ 8E’5F
=6,a,,9%,,9,

Table 2 Comparison of detection and identification time between two detection cirteria

‘ SF QEE,.mnn only QEE; mnn only QEE;mnn + QEE; ynn
Types
¢ an 3] a, 0 an
SF#1 SFDT 430.000 430.000 430.125 430.125 430.000 430.000
SFIT 430.000 430.000 430.125 430.125 430.000 430.000
SF#2 SFDT 430.000 430.000 430.125 430.125 430.000 430.000
SFIT 430.375 430.375 430.500 430.500 430.375 430.375
SF#3 SFDT 430.125 430.125 430.375 430.250 430.125 430.125
SFIT 430.500 430.500 430.500 430.500 430.500 430.500
SF#4 SFDT 430.250 - 431.500 4530.375 430.250 430.375
SFIT 430.750 - 431.875 430.750 430.750 430.750
SF#5 SFDT - - 432.625 432.125 432.625 432.125
SFIT - - 433.000 432.625 433.000 432.625
SF#6 SFDT - - 434,375 434.500 434375 434.500
SFIT - - 434,750 435.000 434750 435.000

Sensor tailure occurred at t = 430 sec

‘- indicates that no sensor failure is declared.

SFDT = Sensor failure detection time

SFIT = Sensor failure identification time




QEEZ-MNN Criteria

Table 3 Comparison of Estimation Error for Sensor Failure Accommodation purposes between the QEE,.\qv and

SF QEE,_mnn only QEE . mnny + QEE; mnn
Types 0 a, 0 a,
SF#1 Mean -0.013389 -0.034811 -0.022118 -0.035364
Variance 0.001186  0.000867 0.001184 0.000866
SF#2 Mean -0.008511 -0.034688 -0.012440 -0.034949
Variance 0.001193 0.000868 0.001193 0.000869
SF#3 Mean -0.010810 -0.034567 -0.017130 -0.034804
Variance 0.001194 0.000869 0.001192 0.000869
SF#4 Mean -0.010746 -0.084446 -0.052581 -0.034753
Variance 0.001198  0.000981 0.001202 0.000872
SF#5 Mean -1.902674 -0.138826 -0.058402 -0.034288
Variance 0.867365 0.002974 0.001209 0.000853
SF#6 Mean -0.976100 -0.141558 -0.076360 -0.034342
Variance 0.202598 0.004558 0.001209 0.000846
un:r“:‘;;%s:‘:' ® Flight Control System LN
Sensors Data
- 1 SFDIAON o Knanar s QEE, o < Thrasnay  failure
(1) ONN#1 stops leamn / ety {number of times)
ON-UNE LEARNNG
(2) Estimate o sensor # MAIN NEURAL NE TWORK -
{oupu of DNN #1) (MNN) Sensor Failure ™ et
replaces sensor #1 Detection v D vminames SendsONN
? SO o ki s
Input Parameters or
Fram Tmek-1to k-p 055,7’,‘,; ;:{;)"‘—“’ -
Observation T I S
phass v- o gt computer
;Aduat aiue of Adual vale aﬂ Adual value of ———— e v — - -
M ~‘Lgnm #at «| sensor #3at k| ™| Begin Observation ——
:"'.............3 ,__._B Send x-ON:Jg:‘:n‘:::?: :;:;;r:: gompu(.' "
(i e L e P
: i L
ORLNE LEARNNG ON-UNE LEARNNG | | ON-UNE LEARNNG Sensor Failure ¢ False Alarm
DECENTRALIZED NN DECENTRALIZED NN| | DECENTRALIZED NN Identification | TseAlmm
(DNN#1) (DNN#2) (DNN#3) O(EE“,;f Thresh l'1 Ega observation pﬂlo:
Iy number of times| No —n x-DNN resumes learnin:

Input

T

FomTire k-1 b kp

SENSOR

|

_‘ tnput Paramders ] fnput Paramders
From Time k-1 © k-p From Time k-1 © kp

SENSOR SENSOR |——

Figure I Block diagram of the SFDIA Scheme with

sensor #1 failure

or Send x-sensor to fight
QEE, ;4> Thresh#2 computer

Sensor Failure
Accommodation

End observation period
Deciare tailure for x-sensor
Send x-ONN estimate to flight computer
in piace of x-sensor

Figure 2 Functional Block Diagram of the SFDIA

Scheme



1.510*

110*

Altitude (ft)

5000

400

300

200

100

Calibrated Airspeed {knots)

10*

Figure 3 Altitude and airspeed profile of the B737-
300 flight data

Theta (deg)

480

11

1.05

An (g)

0.95 |

0.85 L
480

0.9

-

L NN Training Phase : 1600 ~ 9600 sec.

F NN Testing Phase : 9600 ~ 10100 sec.

L

Ol oo e Uy b "

0 2000 4000 6000 8000 110 1.210* 14
Time (sec)

- !

- NN Training Phase : 1600 ~ 9600 sec.

r NN Testing Phase : 9600 ~ 10100 sec.

s

L il ) 1 Lo H bk

4] 2000 4000 6000 8000 110 1.210* 1.410*

Time (sec)

cutoff freq. of 5 rad/sec

490
Time {sec)

Figure 4 Sample of raw and filtered B737-300 flight

data

- Raw M’WM
: «eseuee« Filtered
i I — ! " [ .
485 490 495
Time (sec} S 500
Raw
Filtered
[ cutoff freq. of 5 rad/sec
| i i n i L .
485 4395

500

0.1

0.08

(deg)
o
o
[+7]

Estimation Error Mean
[d
o
S

0.03
0.025
0.02
Bo.015

0.01

Estimation Error Mean

0.005

Figure

0.04

0.02

Estimation Error Variance
(deg*2)

0.01

0.009

0.008

o
=3
S
=

(g2)

o
=]
(=]
@

Estimation Error Variance

o o
S B8
E w

Figure 6 Estimation error variance vs. number of

Numbeg%e training g? ?oops

training loops

d
H Learning rate :
k- from 0 t0 100 foops : 0.01
o from 100 to 200 loops : 0.005
H from 200 t 300 loops : 0.001
TSN ST EN R SR SO PR NSRS | Aerebead
(] 50 100 150 200 250 300
Number of training ioops
;. Learning rate :
F fFom 0 10 100 loops : 0.001
C from 100 to 200 loops : 0.0005
- from 200 o 500 loops : 0.0001
£ 1 n r— n 1 L
0 100 200 300 400 500
Number of training loops
5 Estimation error mean vs. number of
training loops
i Learning rate :
r fom 0 to 100 foops : 0.01
L from 100 to 200 loaps * 0.005
- from 200 to 300 loops : 0.001
L
N R ST T T S
0 50 100 150 200 250 300
Number of training loops
i |
a Learning rate : 5
- from 0 to 100 loops 0 001
£y from 100 to 200 loaps 0 0005
o from 200 to S00 loops 0 0001
E I
-\ |
EoT— :
|
EL | TSR T T SN SR SR SRV S i .
0 100 400 500




003 ¢
© F a ] ter failure att=430 sec
0025 "
E 0.02 :—-'--'-"-'""*; """""""""""""""""
= E i
-;—;0.015 - - m = - = = - - —— -
E F i —o— ot
F oo PO [ e
Q r “ a H —_—
T'E 0.005 F QEE-1 Thresh
§ A 5 T i QEE-182 Thresh
& 0 fro
0005 . . PR ST S |
400 420 440 460 480 500

Time (sec)

Figure 7 Plot of QEEI-MNN and QEEZ-MNN vs. Time
for a, Sensor Failure Type #6

o1

A DNN Error (QEE-1)
......... AnDNN Error (QEE-182)

008 |

An DNN Error (g*2)

a accelerometer failure occumed at t=430 sec.

o b L

400 420 440 460 480 500
Time (sec)

IS

Figure 8 Plot of QEE,, pny vs. Time for a, Sensor

Failure Type #6
14 1
] #0 Nomna
13 fnFaure
o MDNNIQEY) |-
12 1 4 mONN(QEEIR) |

Normal acceleration (g)

a accelerometer failure occurred at t=430 sec.

| . . N 1

400 420 440 460 480 500
Time (sec)

Figure 9 Plot of the Sensor Failure Accommodation
for a, Sensor Failure Type #6

0.05
. E —o— QEE1
N R N QEE-122
e I H — -- QEE1 Thwash
'E 003 o I . QEE182Thresh
E a
b}
2
B
B
3
Pitch Euler angle failure occurred at t=430 sec
-001 : e
400 420 440 480 480 500

Time (sec)

Figure 10 Plot of QEE.\sn and QEEs.ynn vs. Time
for 6 Sensor Failure Type #6

0.005
- —e Theta ONN Erfor (QEE-1)
0004 = | .. The DNN Error (QEE-182)
r — — Theta Thresh#1
0003

Theta DNN Error (rad*2)

Pitch Euler angle failure occured at t=430 sec
N [ |

400 40 440 460 480 500
Time (sec)

Figure 11 Plot of QEE4.pyn vs. Time for 8 Sensor

Failure Type #6
13
12 I Theta Nomna|
F]ee Theta Fadure o
11 F|--0- - meadNnQeE ‘/IJ !
-4+ Theta DNNQEE-182)

Pitch angle (deg)
>

Pitch Euler angle failure occurred at1=430 se¢
el L A

400 420 440 460 480 500
Time (sec)

Figure 12 Plot of the Sensor Failure Accomm-
odation for 0 Sensor Failure Type #6




Appendix A.6

Authors:
Del Gobbo, D., Napolitano, M., Callahan, J, Cukic, B.

Title:

“Experience in Developing System Requirements Specification for a Sensor
Failure Detection and Identification Scheme”

Proceedings of the 3™ IEEE High-Assurance Systems Engineering Symposium,
Alexandria, Va, November 1998




Experience in Developing System Requirements Specification for a Sensor
Failure Detection and Identification Scheme

Diego Del Gobbo, Marcello Napolitano -

Mechanical and Aerospace Engineering
West Virginia University
Morgantown, WV 26505-6106
Email: {delgobbo,napolit}@cemr.wvu.edu

Abstract
This paper presents insights gained while developing
System Requirements Specification of a flight control

system within a formal framework. SCR methodology .

has been used for the description of the requirements of
Sensor Failure Detection and Identification Scheme.
The emphasis is on the practical aspects and
experience gained through the application of a formal
method in developing the system level requirements for
the given application.

1. Introduction

In this paper the focus is on the application of formal
methods in system requirements specification for
Failure Detection and Identification (FDI) schemes.
The main task of the FDI scheme is proper detection
and identification of faults, in order to allow on-line or
off-line accommodation by the system. The schemes
under analysis are those dedicated to dynamic systems
and based on analytical redundancy. Analytical
redundancy is the alternative to the traditional physical
redundancy approach. The latter can be summarized as
a 'voting' scheme that compares redundant outputs
from similar hardware elements to check for
consistency [10]. One element is declared faulty if its
output deviates substantially from the average value of
the others. This technique is widely used and its
application to sensor FDI is straightforward. On the
other hand, its application to monitoring of a generic
system component is not always feasible, due to the
additional weight and cost.

The analytical redundancy approach is based upon
the idea that the output of sensors measuring different
but functionally related variables can be processed in
order to detect a failure and identify the faulty
component [8]. Thus, the FDI scheme considered
consists of an algorithm that processes data related to
the system dynamics. Many different schemes have
been proposed in the technical literature. These
schemes have been tested via simulations, but their
validation results are not fully acceptable. Regulating
agencies, such as the FAA, require a more disciplined
approach to developing and validating FDI schemes.

John Callahan, Bojan Cukic
Computer Science and Electrical Engineering
West Virginia University
Morgantown, WV 26505-6109
Email: {callahan,cukic}@csee.wvu.edu

However, to date, an integrated approach to the
development and validation of FDI schemes has not
been addressed. The first step in this direction can be
the definition of System Requirements Specification
(SyRS). A well structured format for the requirements
document is recommended in order to facilitate the
requirements validation by domain experts[2, 6].
However,  this may not be enough. Formal
methodologies for SyRS, as well as automated
validation tools are becoming increasingly important.
By developing a formal model of the requirements, a
greater level of assurance can be obtained in their
validation.

In this study, an attempt is made to specify the
requirements * for an FDI scheme within a formal
framework. The system considered is an aircraft; the
objective of the FDI scheme is to detect possible
failures on the roll, pitch and yaw rate gyros and to
report the faulty sensors to the Recovery System. The
formal technique adopted is SCR [4, 5]. The
employment of a formal method for the requirements
specification of the FDI scheme facilitated a better
understanding of the required system behavior within
its environment. While developing the system level
requirements, we also gained important insights in
formal description of the environment.

In the following section, the SyRS process is briefly
reviewed along with formal methods. In section three,
the SCR description of the system requirements for a
sensor FDI scheme for an aircraft is provided. Section
four illustrates the results of this study, which are
summarized in section five.

2. Formalizing System Requirements

At the system level, requirements specification
represent an abstraction of the system behavior. It
contains all the required features of the system, without
involving any details about their implementation. The
construction of this high-level model of the system
within a formal framework allows effective analysis
and validation. A large number of formal methods and
tools have been suggested in the technical literature.
Most of them originated with software developers.



Despite the large number of methods, most of them

have not been successfully applied in SyRS [9]. The

following features turn out to be essential for a formal
method to be successful in practical applications:

e A clear, immediate understanding of the system to
be developed (graphical representations are usually
preferred);

e Tools to analyze the specifications from a static
(syntax, consistency, redundancy, etc.) and a
dynamic point of view (the model of the system
should be executable);

e The evolution of the requirements during the
system development process requires a periodic
analysis of the specifications which s
unmanageable without an automated tool.

The formal method adopted in this study is SCR [4,
5]. In SCR, system behavior is described as a mode
class (finite state machine) defined on the monitored
variables (or input variables). The system action in the
environment is modeled by means of the controlled
variables (or output variables). In addition to inputs,
outputs and modes, three more entities are used within
the description: terms, conditions, and events. A term is
an auxiliary function that helps make the specification
concise; a condition is a predicate defined on the
system entities; an event occurs when any system
entity changes value. The description of the system is
given in a tabular format. A mode transition table
describes the finite state machine, while condition
tables and event tables are used to describe output
variables and terms.

3. FDI scheme: requirements specification

The FDI system is installed on an aircraft, referred to
as the Aircraft System (AS). The AS is instrumented
with three rate gyros that measure roll, pitch and yaw
angular velocity of the aircraft. The set of the three
gyros will be referred to as the Monitored System
(MS). The outputs of the gyros are used within the
control system loop of the AS. The AS is also
equipped with a Recovery System (RS). It is assumed
that faults affect only the components of the MS. If a
failure occurs and the faulty gyro is identified within a
certain time period from the occurrence of the failure,
then the RS is able to reconfigure the control system to
accommodate the failure. The accommodation of the
failure will guarantee the safety of the AS. However, it
will induce some degradation in the controllability of
the AS. The main task of the FDI System is to identify
the faulty sensor after the occurrence of a failure. The
FDI System will be operational only in cruise flight
condition. Thus, it should be possible to make it non-
operative at take-off and landing.

The previous description has been used as a
guideline for a formal specification of the FDI System

requirements. Since requirements are “condition over
phenomena of the environment” {7], a formal
description of the environment is necessary. Hence, the
SCR description illustrated here contains an abstraction
of the FDI System as well as -an-abstraction of the
environment. This description’ does not claim to be a
complete. Rather, it represents an attempt towards the
development of the requirements specification within a
formal framework, with the objective of testing the
suitability of the SCR method for this application.

In Figure 1, the FDI System, the RS, and AS are
shown, along with their inputs and outputs. The
description of the inputs and outputs for each System is
provided within the SCR model.

FOI : RECOVERY
SYSTEM - SYSTEM

——mein_sw—s|

e |

AIRCRAFT
SYSTEM

Figure 1: FDI system within its environment

The SCR model is made up of three mode classes,
one for each system in Figure 1. The mode class related
to the AS is called 4_ctr/ and contains modes in the set
{good, acceptable, deteriorating, bad}. These modes
represent the controllability state of the aircraft. The
monitored variables for this mode class are faulty_set,
S type, f par, A_state, d level, rcv_set. By means of
these variables, different fault scenarios can be
described. Faulty set is the set of failures that may
occur in the MS. F_type and f par are the variables
that describe the type of failure occurred and the
related parameters. For example the failure types of
interest could be "gyro output stuck on a value", or
"gyro output biased by an offset". The related failure
parameters could be "stuck value" and "offset value",
respectively. A_state represents the state of the aircraft,
for example the "current maneuver". D_level represents
a generic disturbance level, for example "turbulence".

Rev_set is the set of recoveries performed by the RS.
The A_ctrl mode class has only one controlled variable,
ph_data, and one term, nr_failure. Ph_data represents
the failure observable through the physical data from
the aircraft instrumentation. Nr_failure represents the
failure not yet recovered by the RS. In order to simplify
the specification of the tables describing the A4_crl
mode class and the related entities, two functions have
been introduced: Td(nr_failure, A_state, f type, f par)
and observable(nr_failure, f type, f par, d level,




A_state). The first function returns the maximum time
interval the aircraft can handle the failure specified in
the input parameters, before the loss of controllability.
The second function returns "yes" if the failure
specified in the input parameters is observable when
the aircraft is in the state A_state under the influence of
a disturbance d_level. A graphical representation of the
AS behavior is shown in Figure 2.

GooD

@(faulty_set 1= fauky_set) /

@Tirovsati=}) (ne_taikre = fauty_set - fsuly_set )
@T( DURATION(A_ctrl = deteriorating) < Td(...} }
[ rcv_set INCLUDES fuuity_set }
DETERIORATING
/( ph_dats = rv_fasure )
[ observabie...) }
QT(fauty_set ix faukty_set)/

(on_fuiture = taulty_set - faulty_set )

@T( DURATION(A_ctrt = deteriorating) > Td(...))

LEGEND
ar(.} avent,
1(.) action;
(. condition o the previos hem; BAD
Td(..) To(ne_feikure, A_stats, 1_type, {_par); " "l"~"" = "—"’)"I" )
observable(...) cbservable(nr_failure, A_siats, f_type, f_par, d_level)

Figure 2: Aircraft System Behavior

The AS starts in good mode. If a failure occurs, it
enters the deteriorating mode. If the failure is
accommodated by the RS before the deadline returned
by Td(nr_failure, A_state, f type, f par), then the AS
enters the acceptable mode, otherwise it enters the bad
mode and the system is no longer recoverable. After
the AS enters the acceptable mode, every failure brings
the system in the deteriorating mode, from which it
exits, as described above. It is worth noting that the AS
can enter the acceptable mode even if no failures have
occurred. In fact, in case of false detection, the RS
reconfigures the AS control system inducing a
degradation of the AS.

The mode class related to the FDI System is called
fdi and contains modes in the set {off standby,
detection}. The monitored variables are main_sw,
activsw, and ph_data. Main_sw is the switch that turns
the FDI System on and off. Activ_sw switches the FDI
System from "operative" to "non-operative". When it is
"non-operative" the outputs of the system are frozen to
the old values. Ph_data is the physical data from the
AS. The controlled variables are p_gyro; q gyro,
r_gyro, fdi_mode. The first three variables represent
the state of the roll, pitch, and yaw gyros, respectively.
Fdi_mode represents the mode of the FDI System. A
graphical representation of the system behavior is
shown in Figure 3. In a typical scenario, the system
starts in off mode where all outputs related to the gyro
states are "ok".

Q@T(main_sw =on ) QT(main_sw =off )
@T(main_sw =off )
@T(activ_sw =off )
DETECTION
STANDBY QT(ph_data = p)/ (p_gyro = faulty)
i_mode = T(ph_data = ) / (q_gyro = faulty)
/{6mode = standby) %T&hnammm-m)
= detection)
Q@T(activ_swson ) Al 4

Figure 3: FDI System Behavior

After take-off the main_sw is turned on and the
system enters the standby mode. In this mode the
system in not yet operative; i.e., no attempt is made to
detect a possible failure. When the aircraft is in cruise
flight condition the activ sw is turned on and the
system enters the detection mode where it is fully
operative. If a fault is detected on one of the gyros, the
corresponding output is set to "faulty” allowing the RS
to accommodate the AS. The aircraft flies toward the
nearest airport; before initiating the landing maneuver
the activ_sw is turned off, so that the FDI System is not
operative with the output frozen to the previous values.
In this way the RS keeps the reconfiguration scheme
related to the detected failure, allowing the safe landing
of the aircraft. Then the main_sw can be turned off and
the FDI System outputs are all reset to "ok".

The mode class related to the RS is called rcv and
contains the modes {off, on}. The monitored variables
correspond to the controlled variable of the fdi mode
class: p _gyro, q gyro, r_gyro, fdi mode. The
controlled variable is rcv_set and represents the set of
recoveries performed by the RS. A graphical
representation of the RS system behavior is shown in
Figure 4. The RS starts in off mode. When the
fdi_mode monitored variable assumes the value
"standby" the system enters the on mode. When the
fdi_mode monitored variable assumes the value "off",
the system gets back to the off mode.

OFF
Hrev_set = ()

@T({fdi_mode = standby ) @T(fdi_mode = off )

ON
@T(p_gyro = faulty) / (rev_set' = rev_set U {p} )
@T(q_gyro = faulty) / (rcv_set' = rev_set U {q) )
@T{r_gyro = faulty) / (rcv_set' = rcv_set U {r} )

Figure 4: Recovery System Behavior




It is worth noting that graphical representations used
to describe the FDI System and its environment are not
part of the SCR model. The state-charts in Figures 2,
3, and 4 provide clear and concise representation of
the overall system in comparison with that provided by
the corresponding tables. Since one of the objective of
a formal requirements specification is a communicative
description of the system, we find the lack of a
graphical representation within the SCR methodology a
disadvantage.

4. Experiences

The major result obtained by applying a formal
technique for the specification of the FDI scheme
behavior within its environment has been a better
understanding of the whole system. The introduction
of the AS, as well as the RS within this model, played
an important role in the description of the FDI scheme
behavior. The major strength of this all-comprehensive
abstraction lies in the interconnection between the FDI
System and the AS. While the failures are injected on
the sensor as an input to the AS (faulty set), the FDI
System learns about these failures through the physical
data (ph_data) recording the dynamics of the AS. If the
state of the environment, as captured by faulty set,
f type, f par, A_state, and d_level, is such that the
failure is not observable on the physical data set, then
the FDI System cannot detect the failure. However, it
cannot be held responsible for this. This recalls the
problems related to the evaluation of the performance
of the FDI System. The performance evaluation aspect
has not been addressed in this study and it will be part
of the future work in this area. But, a significant step
toward a proper evaluation of the FDI scheme
performance has been made by describing both FDI
System and its environment, the performance of the
FDI System can be related to the observable failure
rather than to the injected failures.

5. Conclusions

In this study, the problem of formal specification of
the System Requirements for an FDI scheme has been
addressed. An SCR description of the FDI scheme,
whose objective is to monitor the state of the roll,
pitch, and yaw rate gyros of an aircraft, has been built.
The FDI System environment has been modeled along
with the FDI System. The need to introduce the
environment abstraction in the SCR model originated
from the nature of the requirements as “conditions over
phenomena of the environment”. The result of such
approach is a better understanding of the FDI System
within its environment and a system-level testing
framework for the FDI System as well as for the

environment. The abstract model obtained clearly
expose the problems related to the assessment of the
FDI scheme performance, representing a first step
toward a more disciplined validation of the system.

In the near future, the SCR description of the system
will be used for consistency checking. Meanwhile,
State charts and Model checking techniques will be
employed to improve the visual representation of the
model and to express the FDI scheme requirements in
terms of Temporal Logic Formulae to allow their
validation.

Acknowledgments

The authors would like to thank Dr. Wu Wen and Dr.
Steve Easterbrook at NASA/WVU Software Research
Laboratory for helpful discussions. Partial support for
the first and second author has been provided by
AFOSR/DEPSCOR and NASA Ames grants.

References

[1] Brooks, F. No Silver Bullet: Essence and Accidents
of Software Engineering, Computer, Apr. 1987.

[2] Dorfman, M. Requirements Engineering from
Software Requirements Engineering, 2™ ed., IEEE CS
Press, Los Alamitos, Calif,, 1997.

[3] France, R.B., Bruel, J., and Raghavan, G. Taming
The Octopus: Using Formal Models to Integrate the
Octopus Object Oriented Analysis Models, Proc. of
HASE"97, Washington, D.C., August,1997. '
[4] Heitmeyer, C.L., Kirby, J., and Labaw, B.G. Tools
for Formal Specification, Verification, and Validation
of Requirements, Proc., COMPASS °'97.

[5] Heitmeyer, C.L., Jeffords, R.D., and Labaw, B.G.
Automated Consistency Checking of Requirements
Specifications, ACM Trans. SE and Methodology, VS5,
No.3, July 1996.

[6] IEEE P1233/D3. Guide For Developing System
Requirements Specifications, December 1995.

[7] Jackson M. The meaning of requirements, Annals
of Software Engineering, V3, 1997.

[8] Patton R., Frank P. and Clark R., Fault Diagnosis
in Dynamic Systems, Theory and Applications, Prentice
Hall, 1989.

[9] Tsai, W., Mojdehbakhsh, R., and Rayadurgam, S.
Experience in Capturing Requirements for Safety-
Critical Medical Devices in an Industrial Environment,
Proc. HASE'97, Washington, D.C., August 1997.

[10] Willsky A.S., A Survey of Design Methods for
Failure Detection in Dynamic Systems, Automatica,
Vol. 12, pp. 601-611, 1976.



